期刊文献+

网络动态干扰监控的信任感知推荐算法设计

Algorithm Design of Trust Aware Recommender Based on Network Dynamic Interference Monitoring
下载PDF
导出
摘要 网络用户信任感知推荐的准确性设计是提高用户间的社交网络辅助信息信任度的重要依据。传统的网络用户信任感知推荐算法采用的是基于社交网络服务和用户评分的推荐系统,主观性较大,协同过滤效果不好。提出一种基于网络动态干扰监控的信任感知推荐算法设计新方法,设计自适应神经模糊系统网络动态干扰监测算法,构建基于向量空间模型的信任度评价指标体系结构,通过调整网络拓扑权重向量设置信任度周期响应加权变量自适应函数,有效降低迭代算法的运算成本,避免了自适应神经模糊系统网络动态干扰监测加权权重成固化状态,提高抗干扰性能。实验结果表明,算法能使社交网络感知推荐模型的预测误差减少,推荐可靠性优于传统方法。 The accuracy design of network user trust aware recommender is key to improve social network auxiliary informa-tion between the user trust degree. The network user perceived trust traditional recommendation algorithm is used in the recommendation system, social network services and user ratings based on subjectivity, collaborative filtering effect is not good. A new method of algorithm design of recommendation trust is propsoed based on aware network dynamic interference monitoring and adaptive neural fuzzy dynamic interference, the design of monitoring system network construction algorithm, vector space model of trust evaluation index system based on trust, set the periodic response variable weighted adaptive function to adjust the network topology by weight, reduce the iterative algorithm cost, it avoids the adaptive neural fuzzy net-work dynamic interference monitoring weight into curing condition, the anti jamming capability is improved. The experi-mental results show that it can reduce the prediction error, and make social network aware recommendation model is superi-or to the traditional method, the recommended reliability is better.
作者 张远红 苗放
出处 《科技通报》 北大核心 2014年第10期76-78,共3页 Bulletin of Science and Technology
关键词 网络动态干扰 用户信任感知 推荐算法 network dynamic interference user perceived trust recommendation algorithm
  • 相关文献

参考文献5

  • 1Hsu F M,Lin Y T,Ho T K.Design and implementation of an intelligent recommendation system for tourist attractions:The integration of EBM model,Bayesian network and Google Maps[J].Expert Systems with Applications,2012,39(3):3257-3264.
  • 2Zhang Y,Zhang M,Liu Y,et al.Localized matrix factorization for recommendation based on matrix block diagonal forms[C] //Proceedings of the 22nd international conference on World Wide Web,2013:1511-1520.
  • 3涂丹丹,舒承椿,余海燕.基于联合概率矩阵分解的上下文广告推荐算法[J].软件学报,2013,24(3):454-464. 被引量:50
  • 4Zhou T,Shan H,Banerjee A,et al.Kernelized Probabilistic Matrix Factorization:Exploiting Graphs and Side Information[C] //SDM,2012:403-414.
  • 5Xia K,Cai J,Wu Y.Research on Improved Network Data Fault-Tolerant Transmission Optimization Algorithm[J].Journal of Convergence Information Technology,2012,7(19):712-717.

二级参考文献20

  • 1Chatterjee P, Hoffman DL, Novak TP. Modeling the clickstream: Implications for Web-based advertising efforts. Marketing Science, 2003,22(4):520-541. [doi: 10.1287/mksc.22.4.520.24906].
  • 2Wang C, Zhang P, Choi R, D'Eredita M. Understanding consumers' attitude toward advertising. In: Proc. of the 8th Americas Conf. on Information System. 2002. 1143-1148.
  • 3Ribeiro-Neto B, Cristo M, Golgher PB, Moura ES. Impedance coupling in content-targeted advertising. In: Proe. of the SIGIR 2605. New York: ACM Press, 2005. 496-503. [doi: 10.1145/1076034.1076119].
  • 4Lacerda A, Cristo M, Goncalves MA, Fan WG, Ziviani N, Ribeiro-Neto B. Learning to advertise. In: Proc. of the SIGIR 2006. New York: ACM Press, 2006. 549-556. [doi: 10.1145/1148170.1148265].
  • 5Broder AZ, Fontoura M, Josifovski V, Riedel L. A semantic approach to contextual advertising. In: Proc. of the SIGIR. 2007. 559-566. [doi: 10.1145/1277741.1277837].
  • 6Chakrabarti D, Agarwal D, Josifovski V. Contextual advertising by combining relevance with click feedback. In: Proc. of the 17th Int'l Con1: on World Wide Web (WWW 2008). Beijing: ACM Press, 2008.417-426. [doi: 10.1145/1367497.1367554].
  • 7Yih W, Goodman J, Carvalho VR. Finding advertising keywords on Web pages. In: Proc. of the 15th Int'l Conf. on World Wide Web (WWW 2006). New York: ACM Press, 2006. 213-222. [doi: 10.1145/1135777.1135813].
  • 8Belkin N, Croft B. Information filtering and information retrieval. Communications of the ACM, 1992,35(12):29-37. [doi: 10.1145/138859.138861].
  • 9Balabanovic M, Shoham Y. Fab: Content-based collaborative recommendation. Communications of the ACM, 1997,40(3):66-72. [doi: 10.1145/245108.245124].
  • 10Resnick P, Iacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In: Proc. of the CSCW'94, 1994. [doi: 10.1145/192844.192905].

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部