期刊文献+

分形理论在近表面缺陷超声A扫检测中的应用 被引量:2

Application of fractal theory on identification of near-surface defects in ultrasonic A-Scan detection
下载PDF
导出
摘要 针对超声相控阵无损检测(NDT)中近表面缺陷识别困难的问题,提出一种基于分形理论的近表面缺陷智能识别方法。运用基于线性插值的盒计数维数算法,计算140组超声A扫(A-Scan)信号的盒计数维数,并运用统计的方法详细分析其分布情况。实验结果表明超声A-scan信号具有分形特性,分形理论可应用于A-Scan信号分析;而且有无缺陷信号的盒维数分布区间差异明显,盒维数可作为A-Scan信号的特征识别近表面缺陷。在超声相控阵自动化检测中,运用分形理论能提高近表面缺陷的检出率,减少人为因素引起的漏检。 The near-surface defects are hard to identify in ultrasonic phased array Non-Destructive Testing( NDT), thus a new intelligent identification method based on fractal theory was proposed to solve this problem. A box-counting dimension algorithm based on linear interpolation was described to calculate the box-counting dimension of 140 groups of ultrasonic AScan time domain signals. Then the distribution of box-counting dimension was analyzed using the statistical method. The experimental results show that ultrasonic A-Scan signal is obviously fractal and it is effective to analyze the A-Scan signal with the fractal approach. This method has the potential to identify near-surface defects since the values of the box counting dimension of defective signals are different from those of defective signals. As a result, the detection rate of near-surface defects can be improved and the omission rate caused by man-made factors can be reduced in ultrasonic phased array automatic testing.
出处 《计算机应用》 CSCD 北大核心 2014年第11期3365-3368,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61201039)
关键词 超声相控阵 近表面缺陷 分形理论 盒维数 缺陷识别 ultrasonic phased array near-surface defect fractal theory box-counting dimension defect identification
  • 相关文献

参考文献10

  • 1DRINKWATER B W, WILCOX P D. Ultrasonic arrays for non-destructive evaluation: a review[J]. NDT and E International, 2006, 39(7): 525-541.
  • 2PRADO V T, HIGUTI R T, KITANO C, et al. Lamb mode diversity imaging for non-destructive testing of plate-like structures[J]. NDT and E International, 2013, 59: 86-95.
  • 3DONSKOY D, SUTIN A, EKIMOV A. Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing[J]. NDT and E International, 2001, 34(4): 231-238.
  • 4VIEIRA A P, MOURA E P, GONCALVES L L, et al. Characterization of welding defects by fractal analysis of ultrasonic signals[J]. Chaos, Solitons and Fractals, 2008, 38(3): 748-754.
  • 5ZHAN X, JIN S. A fractal-based flaw feature extraction method for ultrasonic phased array nondestructive testing[C] // ICMA 2009: Proceedings of the 2009 International Conference on Mechatronics and Automation. Piscataway: IEEE Press, 2009.
  • 6BIANCIARDI G, BISOGNO S, BERTOLDI I, et al. Fractal dimension of bone texture in radiographs correlates to ultrasound broadband attenuation T-score[J]. Clinical and Experimental Rheumatology, 2013, 31(3): 389-393.
  • 7de MOURA E P, NORMANDO P G, GONALVES L L, et al. Characterization of cast iron microstructure through the statistical fluctuation and fractal analysis of ultrasonic backscattered signal[J]. AIP Conference Proceedings, 2011, 1335(1): 1104-1111.
  • 8MANDDELBROT B. The fractal geometry of nature[M]. New York: W H Freeman and Company, 1982.
  • 9RAISUTIS R, TUMSYS O, KAZYS R, et al. Application of time-frequency analysis in the case of ultrasonic imaging in a background of structural noise[J]. Insight — Non-Destructive Testing and Condition Monitoring, 2007, 49(11): 634-640.
  • 10倪志伟,倪丽萍,杨葛钟啸.分形技术在案例库维护中的应用[J].计算机应用,2009,29(6):1598-1600. 被引量:1

二级参考文献17

  • 1耿焕同,肖明军,邹翔,蔡庆生.聚类算法在范例库维护中的应用研究[J].计算机工程,2005,31(12):166-168. 被引量:10
  • 2姜灵敏,周锋.上证指数盒维数的计量与特性研究[J].系统工程学报,2006,21(4):434-437. 被引量:6
  • 3SMYTH B. KEANE M T. Remembering to forget: A competence- preserving case deletion policy for case-based reasoning systems [ EB/OL]. [2008 - 10 - 10]. http://citeseerx. ist. psu. edu/view- doc/summary?doi = 10.1.1.17. 2767.
  • 4FRANCIS A G, RAM A. The utility problem in case-based reasoning [ EB/OL]. [ 2008 - 10 - 10]. http://citeseerx.ist. psu. edu/ viewdoc/summary?doi = 10.1.1.50. 639.
  • 5LEE H D, MONARD M C, WU FENG-CHUNG. A fractal dimension based filter algorithm to select features for supervised learning [EB/OL]. [2008 - 10 - 10]. http://www, icmc. usp. br/- iarn2006/sbia/apresentacoes/IBERAMIASBIA _ TS1/IBERAMIAS- BIA TS1 A2. pdf.
  • 6BARBARA D , CHEN P . Using the fractal dimension to cluster datasets [C]/! ACM-SIGKDD: Proceedings of the 2000 International Conference in Knowledge Discovery and Data Mining. Menlo Park, California: AAAI Press, 2000:260-264.
  • 7HIPPENSTIEL R, EL-KISHKY H, RADEV P. On time-series analysis and signal classification - part I: Fractal dimensions [ C]// Conference Record of the 38th Asilomar Conference on Signals, Systems and Computers. Washington, DC: IEEE Press, 2004, 2:2121 - 2125.
  • 8BARBARA D, NAZERI Z. Fractal mining of association rules over interval data [ R]. Fairfax: George Mason University, 2000.
  • 9BARBARA D . Chaotic mining : Knowledge discovery using the fractal dimension [ EB/OL]. [ 2008 - 10 - 10]. http://www. isse. gmu. edu/techrep/1999/99_03 _barbara. ps.
  • 10BORGNAT P, FLANDRIN P, AMBLARD P O. Stochastic discrete scale invariance [ J]. IEEE Signal Processing Letters, 2002, 9 (6): 181 -184.

同被引文献21

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部