期刊文献+

月球轨道交会对接航天器相对状态误差分析 被引量:6

Relative Position and Velocity Error Covariance Analysis of Two Spacecraft in Lunar Orbit Rendezvous and Docking
下载PDF
导出
摘要 为分析同波束干涉测量这一高精度相对测角技术对月球交会对接两个航天器的相对位置、速度(状态)影响,文章根据协方差分析理论及各测量量的模型,推导测量量关于相对状态量的信息矩阵,建立了相对状态误差协方差模型;结合月球轨道交会对接仿真轨道,开展测量误差对两个航天器的相对状态误差影响协方差分析。结果表明,在当前测量误差条件下,相对位置、速度误差分别达到米级和厘米每秒级。在分析相对状态误差影响因子的基础上,重点对同波束干涉测量差分相时延整周模糊误差及时延率误差对相对状态影响进行了分析,结果表明整周模糊度误差对相对位置误差影响显著,时延率误差对相对速度误差影响显著。 To establish steady relative navigation between two spacecraft in lunar orbit rendezvous and docking,accurate relative state determination between two spacecraft is needed in the long range ground based navigation.Same beam interferometry(SBI),as a high precision technology for relative angle measurement,is of great sigficant in the relative state determination.However,the system method for analyzing the influence of SBI on the relative states of two spacecraft in lunar orbit rendezvous was not developed.The information matrix of measurements with the relative states was deduced according to the covariance theory,and the model of the relative states error covariance was established.The simulation results show that the relative position and velocity errors are within the meter and millimeter per second under the current range,range rate,VLBI and SBI measurement errors.The error and its influence was obtained,and the influence of cycle ambiguity error on relative state error was analyzed.The resutls show that the cycle ambiguity of SBI reduce from 2to 0,and the relative position error on T and Nis decreased greatly.
出处 《中国空间科学技术》 EI CSCD 北大核心 2014年第5期32-40,共9页 Chinese Space Science and Technology
基金 探月工程重大关键技术研究专项(TY3Q20100009)资助项目
关键词 同波束干涉测量 相对状态 误差协方差 交会对接 月球探测 Same Beam Interferometry Relative states Error covariance analysis Rendezvous and docking Lunar exploration
  • 相关文献

参考文献16

  • 1董光亮,陈少伍,李海涛.月球轨道器交会对接地面高精度导引技术研究[J].飞行器测控学报,2013,32(1):1-6. 被引量:4
  • 2MARCII.LE H, MOREAU G, PASCAL V. Relative GPS navigation design and validation for ATV rendezvous [C]. Proceedings of Third International Conference on Spacecraft Guidance, Navigation and Control Systems, ESTEC, Noordwijk, November, 1996:77 82.
  • 3SALZBERG I M. Tracking the Apollo Lunar Rover with interferometry techniques [C] // Proceeding ofIEEE Tracking Data Evaluation Section, 1973, 61(9): 1233-1236.
  • 4FOLKNER W M, BORDER J S, NANDI S, et al. Precise tracking of the Magellan and Pioneer Venus Orbiters by same-beam interferometry part II: orbit determination analysis [R]. TDA Progress Report 42 113, JPL, 1993: 22-36.
  • 5KIKUCHI F, LIU Q H, HANADA H, et al. Pico-second accuracy VLBI of the two sub-satellites of SELENE (KAGUYA) using multi frequency and same beam methods [J]. Radio Science, 2009, 44: 1-7.
  • 6YUSUKE K, HIDEO H, PING J S, et al. Precise positioning of spacecrafts by multi-frequency VLBI [J]. Earth Planets Space, 2003, 55: 581-589.
  • 7TAPLEY B D, SCHUTZ B E, BORN G H. Statistical orbit determination [M]. California: Eisvier Academic Press, 2004: 183-189.
  • 8CURKENDALL D W, MAREYNOLDS S R. A simplified approach for determining the information content of radio tracking data [J]. Journal of Spacecraft, 1969, 6(5): 520-525.
  • 9THURMAN S W. Information content of a single pass of phase delay data from a short baseline connected element interferometer [R]. TDA Progress Report 42 101, 1990.
  • 10THURMAN S W. Deep-space navigation with differenced data types part I: differenced range information content [R]. TDA Progress Report 42 103, Jet Propulsion Laboratory, Pasadena, California, 1990:47 -60.

二级参考文献18

  • 1Dahlen J M,Nevins J L. Navigation for the Apollo program[M].Cambridge:Instrumentation Laboratory,1964.
  • 2Wilson R E. Apollo experience report-guidance and control systems[M].Washington DC:National Aeronautics and Space Administration,1976.
  • 3Peltzer K E. Apollo unified S-band system,No.TM X-55492[M].Goddard Space Flight Center,1966.
  • 4Engel J N. Langley lunar orbiter orbit determination result,No.67-FM-60.MSC Internal Note[R].1967.
  • 5Mitchell P H. Preliminary MSFN error analysis for AS504A,No.67-FM-29.MSC Internal Note[R].1967.
  • 6Personne G,Lopez-y-diaz A,Delpy P. ATV GNC synthesis:overall design,operations and main performances[A].Loutraki,Greece,2005.39-49.
  • 7Gonnaud J L,Pascal V. ATV guidance navigation and control for rendezvous with ISS[A].ESTEC,Noordwijk,The Netherlands,1999.501-510.
  • 8Border J S,Folkner W M,Kahn R D. Precise tracking of the Magellan and Pioneer Venus Orbiters by same-beam interferometry,Part Ⅰ:data accuracy analysis,TDA progress report 42-110[R].Tracking Systems and Applications Section,1992.
  • 9Folkner W M,BorderJ S,Nandi S. Precise tracking of the Magellan and Pioneer Venus Orbiters by same-beam interferometry Part Ⅱ:orbit determination analysis,TDA progress report 42-113[R].Tracking Systems and Applications Section,1993.
  • 10Folkner W M,Border J S. Orbiter-orbiter and orbiter-lander tracking using same-beam interferometry,TDA progress report 42-109[R].Tracking Systems and Applications Sec tion,1992.

共引文献33

同被引文献52

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部