期刊文献+

语法和语义相结合的中文对话系统问题理解研究 被引量:5

Question Understanding by Combining Grammar and Semantic for Chinese Dialogue System
下载PDF
导出
摘要 针对中文口语问句的表达多样性对对话系统问题理解带来的挑战,该文采用"在语法结构之上获取语义知识"的设计理念,提出了一种语法和语义相结合的口语对话系统问题理解方法。首先人工编制了独立于领域和应用方向的语法知识库,进而通过句子压缩模块简化复杂句子,取得结构信息,再进行问题类型模式识别,得到唯一确定问题的语义组织方法、查询策略和应答方式的句型模式。另一方面,根据领域语义知识库,从源句子中提取相应的语义信息,并根据识别到的句型模式所对应的知识组织方法进行语义知识组织,完成对问句的理解。该文的方法被应用到开发的中文手机导购对话系统。测试结果表明,该方法能有效地完成对话流程中的用户问题理解。 To solve the problems caused by diversity and flexibility of Chinese language in question understanding, the paper adopts the strategy of “getting semantic knowledge based on grammar question type structure” ,and pro- poses a question understanding method by combining grammar and semantics for Chinese spoken dialogue system. First, we set up a hand crafted grammar bases working independent of the domain and application direction. Sec- ond, through sentence compression, utterances are simplified to the structure of a sentence. Then question type pat- tern recognition is applied to determining the only question type pattern for the utterance which corresponds to the proper semantic organization method, query strategy and response way. On the other hand, we extract the relevant semantic information from the source utterance according to domain knowledge base. Afterwords, the extracted se mantic information is converted into well-organized semantic knowledge based on the corresponding question type pattern to complete the question understanding. The proposed method is implemented as a Chinese dialogue system for mobile phone shopping guide. Test results demonstrate the efficiency of our approach.
出处 《中文信息学报》 CSCD 北大核心 2014年第6期70-78,共9页 Journal of Chinese Information Processing
基金 广东省大学生创新训练计划项目(1056412151 1056413096 201410564290) 广东省科技计划项目(2012A020602012)
关键词 问题理解 对话系统 句型模式 中文 question understanding dialogue system question type pattern Chinese
  • 相关文献

参考文献33

  • 1Weizenbaum J.ELIZA-A computer program for the study of natural language communication between man and machine[J] .Communications of the ACM,1966,9(1):36-45.
  • 2Colby K M,Weber S,Hilf F D.Artificial paranoia[J] .Artificial Intelligence,1971,2(1):1-25.
  • 3Wallace R S.The Anatomy of A.L.I.C.E.[EB/OL] ,A.L.I.C.E.Artificial Intelligence Foundation Inc.,2004.
  • 4清华大学图书馆智能机器人小图[EB/OL] .http://166.111.120.164:8081/programd/.
  • 5小Ⅰ机器人[EB/OL] .http://www.xiaoi.com/index.html.
  • 6Schumaker R P,Chen H.Leveraging question answer technology to address terrorism inquiry[J] .Decision Support Systems,2007,43(4):1419-1430.
  • 7Jia J Y.CSIEC:A computer assisted English learning chatbot based on textual knowledge and reasoning[J] .Knowledge-Based Systems,2009,22 (4):249-255.
  • 8Crutzen R,Peters G Y,Portugal S D,et al.An artificially intelligent chat agent that answers adolescents' questions related to sex,drugs,and alcohol:An exploratory study[J] .Journal of Adolescent Health,2011,48(5):514-519.
  • 9Huang J Z,Zhou M,Yang D.Extracting chatbot knowledge from online discussion forums[C] //Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007),Hyderabad,India,January 2007:423-428.
  • 10Russell R S.Language Use,Personality and True Conversational Interfaces[R] .Project Report,AI and CS,University of Edinburgh,Edinburgh,2002.

二级参考文献48

  • 1刘蓓,杜利民.汉语口语对话系统中语义分析的消歧策略[J].中文信息学报,2005,19(1):76-83. 被引量:3
  • 2周强,俞士汶.汉语短语标注标记集的确定[J].中文信息学报,1996,10(4):1-11. 被引量:35
  • 3Goddeau D., Brill E., Glass J. et al.. GALAXY: A human language interface to online travel information. In: Proceedings of the International Conference on Spoken Language Processing (ICSLP'94), Yokohama, Japan, 1994, 707~710
  • 4Huang F., Yang J., Waibel A.. Dialogue management for multimodal user registration. In: Proceedings of the International Conference on Spoken Language Processing (ICSLP'2000), Beijing, China, 2000, 3:37~40
  • 5Abe K., Kurokawa K., Taketa K., Ohno S., Fujisake H.. A new method for dialogue management in an intelligent system for information retrieval. In: Proceedings of the 6th International Conference on Spoken Language Processing (ICSLP'2000), Beijing, China, 2000, 118~121
  • 6Denecke M.. Informational characterization of dialogue states. In: Proceedings of the International Conference on Spoken Language Processing (ICSLP'2000 ), Beijing, China, 2000,2:114~117
  • 7Levin E., Pieraccini R., Echert W.. A stochastic model of human-machine interaction for learning dialog strategies. IEEE Transactions on Speech and Audio Processing, 2000, 8(1): 11~23
  • 8Lin Bor-Shen, Wang Hsin-Min, Lee Lin-Shan. A distributed agent architecture for intelligent multi-domain spoken dialogue systems. IEICE Transactions on Information & System, 2001, E84-d(9): 1217~1230
  • 9Wu Xiao-Jun, Zheng Fang, Xu Ming-Xing. Topic forest: A plan-based dialogue management structure. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP2001), Salt Lake City, USA, 2001, 617~620
  • 10H. Masataki, Y. Sagisaka and T. Kawahara. Task adaptation using MAP estimation in n-gram language modeling [C]. ICASSP' 97, 1997, 783 - 786.

共引文献27

同被引文献24

引证文献5

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部