期刊文献+

具阻尼的高维广义Boussinesq方程的Cauchy问题的整体适定性 被引量:1

Global Well-posedness of Cauchy Problem for Damped Multidimensional Generalized Boussinesq Equations
下载PDF
导出
摘要 研究了一类具阻尼的高维广义Boussinesq方程utt-Δu-Δutt+Δ2u-kΔut=Δf(u)的Cauchy问题,在没有建立问题局部解存在性理论的情况下,利用位势井方法分析了阻尼系数k与初值及井深之间的关系,得到了整体解存在与不存在的门槛结果. We study the Cauchy problem for a class of damped multidimensional generalized Boussinesq equations utt Δu-Δutt+Δ2u-kΔut=Δf(u), where k 〉 0. By using potential well method, we analyze the relation between the coefficient k of damping term and the initial data as well as the depth of potential well and obtain the existence and nonexistence of global weak solution without establishing the local existence theorv.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2014年第5期1173-1187,共15页 Acta Mathematica Scientia
基金 国家自然科学基金(11101102) 高等学校博士学科点专项科研基金(20102304120022) 黑龙江省博士后基金 黑龙江省普通高等学校青年学术骨干支持项目(1252G020) 中央高校基本科研业务费专项资金资助
关键词 具阻尼的高维广义Boussinesq方程 CAUCHY问题 整体存在性 不存在性 位势井方法 Damped multidimensional generalized Boussinesq equations Cauchy problem Global existence Nonexistence Potential well method.
  • 相关文献

参考文献16

  • 1Boussinesq J. Theorie des ondes et de remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contene dans ce canal des vitesses sensiblement pareilles de la surface au loud. J Math Pures Appl 1872 217:55-108.
  • 2An L J, Peire A. A weakly nonlinear analysis of elastoplastic-microstructure models. J Math Anal Appl, 1995, 55(1): 136-155.
  • 3Schneider G, Eugene C W. Kawahara dynamics in dispersive media. Phys D, 2001, 152/153:108-110.
  • 4Boussinesq M J. Essai sur la th@orie des eaux courantes. M@moires prsent@s par divers savants I Acad6mie des Sciences Inst France, 1877, 2(3): 1-680.
  • 5Makhankov V G. Dynamics of classical solitons (in nonintegrable systems). Phys Rep, 1978, 35(1): 1 128.
  • 6Wang S B, Chen G W. Small amplitude solutions of the generalized IMBq equation. J Math Anal Appl, 2002, 27"4(2): 846 866.
  • 7Wang S B, Chen G W. The Cauchy problem for the generalized IMBq equation in Ws,P(Rn). J Math Anal Appl, 2002, 262(1): 38-54.
  • 8Varlamov V. Existence and uniqueness of a solution to the Cauchy problem for the damped Boussinesq equation. Math Methods Appl Sci, 1996, 19(8): 639-649.
  • 9Varlamov V V. On spatially periodic solutions of the damped Boussinesq equation. Differential Integral Equations, 1997, 10(6): 1197 1211.
  • 10Varlamov V V. Long-time asymptotics of solutions of the second initial-boundary value problem for the damped Boussinesq equation. Abstr Appl Anal, 1997, 2(3/4): 281-289.

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部