期刊文献+

基于按指数律拓展的分数阶积分的El-Nabulsi-Pfaff变分问题的Noether对称性 被引量:14

Noether Symmetries for El-Nabulsi-Pfaff Variational Problem from Extended Exponentially Fractional Integral
下载PDF
导出
摘要 基于El-Nabulsi动力学模型,提出并研究了Birkhoff系统基于按指数律拓展的分数阶积分的变分问题的Noether对称性与守恒量。基于按指数律拓展的分数阶积分的El-Nabulsi-Pfaff-Birkhoff变分问题,建立起与之对应的El-Nabulsi-Birkhoff方程;基于El-Nabulsi-Pfaff作用量在无限小变换下的不变性,给出系统的Noether对称变换和Noether准对称变换的定义和判据。该研究建立Birkhoff系统基于按指数律拓展的分数阶积分的变分问题的Noether定理,揭示了该模型下系统的Noether对称性和守恒量之间的关系。文末举例说明结果的应用。 Based on El-Nabulsi dynamical model,the Noether symmetries and the conserved quantities for the variational problem of Birkhoffian system from extended exponentially fractional integral are pres-ented and studied.Firstly,the El-Nabulsi-Pfaff-Birkhoff variational problem from extended exponentially fractional integral is presented,then the corresponding El-Nabulsi-Birkhoff equations are derived.Sec-ondly,the definitions and the criteria of the Noether symmetric transformations and the Noether quasi-symmetric transformations of the system are given,which are based on the invariance of El-Nabulsi-Pfaff action under the infinitesimal transformations of group.Finally,the Noether theorem for the variational problem of Birkhoffian system from extended exponentially fractional integral is established,which reveals the inner relationship between a Noether symmetry and a conserved quantity.An example is given to il-lustrate the application of the results.
作者 丁金凤 张毅
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期150-154,共5页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(10972151 11272227)
关键词 BIRKHOFF系统 NOETHER对称性 El-Nabulsi动力学模型 按指数律拓展的分数阶积分 守恒量 Birkhoffian system Noether symmetry El-Nabulsi dynamical model extended exponential-ly fractional integral conserved quantity
  • 相关文献

参考文献20

  • 1RIEWE F. Nonconservative lagrangian and hamiltonian mechanics [J]. Physical Review E, 1996, 53(2): 1890 - 1899.
  • 2RIEWE F. Mechanics with fractional derivatives [ J ]. Physical Review E, 1997, 55(3) : 3581 -3592.
  • 3AGRAWAL O P. Formulation of Euler-lagrange equations for fractional variational problems [ J ]. Journal of Mathe- matical Analysis and Applications, 2002, 272 ( 1 ) : 368 - 379.
  • 4ATANACKOVIC T M, KONJIK S, PILIPOVI C S, et al. Variational problems with fractional derivatives: In- variance conditions and Noether's theorem [ J ]. Nonlinear Analysis, 2009, 71 (5/6): 1504- 1517.
  • 5MALINOWSKA A B, TORRES D F M. Introduction to the fractional calculus of variations [ M ]. London : Impe- rial College Press, 2012.
  • 6EL-NABULSI A R. A fractional approach to nonconserva- tive Lagrangian dynamical systems [ J]. Fizika A, 2005, 14(4) : 289 -298.
  • 7EL-NABULSI A R. Fractional variational problems from extended exponentially fractional integral [ J ]. Applied Mathematics and Computation, 2011,217 : 9492 - 9496.
  • 8EL-NABULSI A R. A periodic functional approach to the calculus of variations and the problem of time-dependent damped harmonic oscillators [ J ]. Applied Mathematics Letters, 2011, 24: 1647- 1653.
  • 9EL-NABULSI A R, TORRES D F M. Fractional action- like variational problems [ J ]. Journal of Mathematical Physics, 2008, 49(5 : 053521.
  • 10EL-NABULSI A R. Fractional action-like variational problems in holonomic, non-holonomic and semi-holo- nomic constrained and dissipative dynamical systems [ J]. Chaos, Solitons and Fractals, 2009, 42 (1): 52 -61.

二级参考文献59

  • 1LUOShao-Kai,JIALi-Qun,CAIJian-Le.Noether Symmetry Can Lead to Non-Noether Conserved Quantity of Holonomic Nonconservative Systems in General Lie Transformations[J].Communications in Theoretical Physics,2005,43(2):193-196. 被引量:4
  • 2贾利群,郑世旺,张耀宇.事件空间中非Chetaev型非完整系统的Mei对称性与Mei守恒量[J].物理学报,2007,56(10):5575-5579. 被引量:18
  • 3OLDHAM K B,SPANIER J.The fractional calculus [M].San Diego:Academic Press,1974.
  • 4MILLER K S,ROSS B.An introduction to the fractional integrals and derivatives-theory and applications [M].New York:John Wiley and Sons Inc,1993.
  • 5PODLUBNY I.Fractional differential equations [M].San Diego:Academic Press,1999.
  • 6HILFER R.Applications of fractional calculus in physics [M].Singapore:World Scientific,2000.
  • 7KILBAS A A,SRIVASTAVA H M,TRUJILLO J J.Theory and applications of fractional differential equations [M].Amsterdam:Elsevier B V,2006.
  • 8RIEWE F.Nonconservative lagrangian and hamiltonian mechanics[J].Phys Rev E,1996,53(2):1890-1899.
  • 9RIEWE F.Mechanics with fractional derivatives [J].Phys Rev E,1997,55(3):3581-3592.
  • 10KLIMEK M.Fractional sequential mechanics-models with symmetric fractional derivative [J].Czechoslovak J Phys,2001,51(12):1348-1354.

共引文献26

同被引文献80

引证文献14

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部