期刊文献+

大数据浅析

下载PDF
导出
摘要 本文分析了大数据的定义与特征,在此基础上探讨了大数据的获取与表示方法 ,以及大数据的存储与管理方式。
作者 徐述
出处 《科技视界》 2014年第31期70-70,310,共2页 Science & Technology Vision
  • 相关文献

参考文献9

  • 1Making sense of Big Data[J]. Technology forecast, A quarterly journal, 2010.
  • 2但彬.大数据=海量数据+复杂类型的数据[EB/OL].2012,7.
  • 3Wang R Y, Ben H B, Madnick S E. Data quality require menu analysis and nodeling[C]//Proceedings of the 9th International Conference on Data Engineering. Vienna, Austria 1993:670-677.
  • 4Galhardas H, Florescu D, Shasha D,Simon E, AJAX: An extensible data cleaning.tool[J]. ACM SIGMOD Record. 2000,29(2):590.
  • 5郭志懋,周傲英.数据质量和数据清洗研究综述[J].软件学报,2002,13(11):2076-2082. 被引量:268
  • 6Fan Wenlei, Geerts Floris. Foundation of management[J]. Synthesis Lectures ondata Management, 2012,4(5):391-217.
  • 7Deerwester S, Dumais S T, Furnas G W, et al. Indexing by latent semantic analysis[J]. Journal of the American Society for Information Science, 1990,41(6):391- 407.
  • 8Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation [J]. Journal of Machine Learning Research, 2003,3(1):993-1022.
  • 9王元卓,靳小龙,程学旗.网络大数据:现状与展望[J].计算机学报,2013,36(6):1125-1138. 被引量:714

二级参考文献92

  • 1Aebi, D., Perrochon, L. Towards improving data quality. In: Sarda, N.L., ed. Proceedings of the International Conference on Information Systems and Management of Data. Delhi, 1993. 273~281.
  • 2Wang, R.Y., Kon, H.B., Madnick, S.E. Data quality requirements analysis and modeling. In: Proceedings of the 9th International Conference on Data Engineering. Vienna: IEEE Computer Society, 1993. 670~677.
  • 3Rahm, E., Do, H.H. Data cleaning: problems and current approaches. IEEE Data Engineering Bulletin, 2000,23(4):3~13.
  • 4Galhardas, H., Florescu, D., Shasha, D., et al. AJAX: an extensible data cleaning tool. In: Chen, W.D., Naughton, J.F., Bernstein, P.A., eds. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. Texas: ACM, 2000. 590.
  • 5Hernandez, M.A., Stolfo, S.J. Real-World data is dirty: data cleansing and the merge/purge problem. Data Mining and Knowledge Discovery, 1998,2(1):9~37.
  • 6Lee, M.L., Ling, T.W., Lu, H.J., et al. Cleansing data for mining and warehousing. In: Bench-Capon, T., Soda, G., Tjoa, A.M., eds. Database and Expert Systems Applications. Florence: Springer, 1999. 751~760.
  • 7Monge, A.E. Matching algorithm within a duplicate detection system. IEEE Data Engineering Bulletin, 2000,23(4):14~20.
  • 8Monge, A.E., Elkan, C. The field matching problem: algorithms and applications. In: Simoudis, E., Han, J.W., Fayyad, U., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Oregon: AAAI Press, 1996. 267~270.
  • 9Savasere, A., Omiecinski, E., Navathe, S.B. An efficient algorithm for mining association rules in large databases. In: Dayal, U., Gray, P., Nishio, S., eds. Proceedings of the 21st International Conference on Very Large Data Bases. Zurich: Morgan Kaufmann, 1995. 432~444.
  • 10Srikant, R., Agrawal, R. Mining Generalized Association Rules. In: Dayal, U., Gray, P., Nishio, S., eds. Proceedings of the 21st International Conference on Very Large Data Bases. Zurich: Morgan Kaufmann, 1995. 407~419.

共引文献978

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部