期刊文献+

Maximization of the sum of the trace ratio on the Stiefel manifold, I: Theory 被引量:1

Maximization of the sum of the trace ratio on the Stiefel manifold, I: Theory
原文传递
导出
摘要 We are concerned with the maximization of tr(V T AV)/tr(V T BV)+tr(V T CV) over the Stiefel manifold {V ∈ R m×l | V T V = Il} (l 〈 m), where B is a given symmetric and positive definite matrix, A and C are symmetric matrices, and tr(. ) is the trace of a square matrix. This is a subspace version of the maximization problem studied in Zhang (2013), which arises from real-world applications in, for example, the downlink of a multi-user MIMO system and the sparse Fisher discriminant analysis in pattern recognition. We establish necessary conditions for both the local and global maximizers and connect the problem with a nonlinear extreme eigenvalue problem. The necessary condition for the global maximizers offers deep insights into the problem, on the one hand, and, on the other hand, naturally leads to a self-consistent-field (SCF) iteration to be presented and analyzed in detail in Part II of this paper. We are concerned with the maximization of tr(VTAV)/tr(VT BV)+ tr(VT CV)over the Stiefel manifold {V ∈ Rm×| V T V = It}(t < m), where B is a given symmetric and positive definite matrix, A and C are symmetric matrices, and tr() is the trace of a square matrix. This is a subspace version of the maximization problem studied in Zhang(2013), which arises from real-world applications in, for example,the downlink of a multi-user MIMO system and the sparse Fisher discriminant analysis in pattern recognition.We establish necessary conditions for both the local and global maximizers and connect the problem with a nonlinear extreme eigenvalue problem. The necessary condition for the global maximizers offers deep insights into the problem, on the one hand, and, on the other hand, naturally leads to a self-consistent-field(SCF)iteration to be presented and analyzed in detail in Part II of this paper.
出处 《Science China Mathematics》 SCIE 2014年第12期2495-2508,共14页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.11101257 and 11371102) the Basic Academic Discipline Program the 11th Five Year Plan of 211 Project for Shanghai University of Finance and Economics a visiting scholar at the Department of Mathematics,University of Texas at Arlington from February 2013 toJanuary 2014 supported by National Science Foundation of USA(Grant Nos.1115834and 1317330) a Research Gift Grant from Intel Corporation
关键词 trace ratio Rayleigh quotient Stiefel manifold nonlinear eigenvalue problem optimality condition EIGENSPACE 最大化问题 Fisher判别分析 比值 对称正定矩阵 MIMO系统 特征值问题 对称矩阵 矩阵的迹
  • 相关文献

参考文献1

二级参考文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部