期刊文献+

SST湍流模型参数校正对风力机CFD模拟的改进 被引量:6

IMPROVEMENT OF CFD SIMULATIONS FOR WIND TURBINES BY CALIBRATING A CLOSURE CONSTANT OF SST TURBULENCE MODEL
原文传递
导出
摘要 以NREL PhaseⅥ叶片为对象,基于RANS方法开展CFD数值模拟研究,发展了先在二维翼型上校正湍流模型封闭常数然后用于三维旋转叶片数值模拟的方法。将在S809翼型上校正出的SST湍流模型封闭常数β*的最佳数值用于NREL PhaseⅥ叶片的数值模拟,可显著提高该叶片在失速状态下气动力的数值模拟准确程度。 Numerical simulations were performed based on RANS method for NREL Phase VI rotor, concerning to the turbulence simulation which plays a key role in predicting aerodynamic force on blades in stall. The rotor' s aerodynamic performance is predicted much more exactly as using the optimal value of a closure constant β of SST turbulence model obtained in S809 airfoil simulations. It makes a possibility to improve simulations for wind turbines in complex wind circumstance by first calibrating the closure constant value in airfoil simulations and then using the calibrated value in blade simulations.
作者 钟伟 王同光
出处 《太阳能学报》 EI CAS CSCD 北大核心 2014年第9期1743-1748,共6页 Acta Energiae Solaris Sinica
基金 国家重点基础研究发展(973)计划(2014CB046200) 国家自然科学基金(11172135) 江苏高校优势学科建设工程 南京航空航天大学基本科研业务费(NS2014010 NJ20130007 NJ20130008 NJ20130009)
关键词 风力机 空气动力学 CFD NRELPhase VI叶片 湍流模型 封闭常数 wind turbine aerodynamics CFD NREL PhaseⅥ blade turbulence model closure constant
  • 相关文献

参考文献15

  • 1Hand M M, Simms D A, Fingersh L J, et al. Unsteady aerodynamics experiment Phase VI : Wind tunnel test configurations and available data campaigns JR]. Golden: National Renewable Energy Laboratory, 2001.
  • 2Simms D, Schreck S, Hand M. NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: A comparison of predictions to measurements [R]. Golden: National Renewable Energy Laboratory, 2001.
  • 3Duque E P N, Burklund M D, Johnson W. Navier- Stokes and comprehensive analysis performance predic- tions of the NREL Phase VI experiment [J]. Journal of Solar Energy Engineering, 2003, 125(4) : 457-467.
  • 4Pape A L, Lecanu J. 3D Navier-Stokes computations of a stall-regulated wind turbine[J]. Wind Energy, 2004, 7 (4) : 309-324.
  • 5Schmitz S, Chattot J J. A parallelized coupled Navier- Stokes vortex-panel solver [J]. Journal of Solar Energy Engineering, 2005, 127(4) : 475-487.
  • 6Uzol N S, Long L N. 3-D time-accurate CFD simulations of wind turbine rotor flow fields [R]. Washington DC: American Institute of Aeronautics and Astronautics, A1AA 2006-394, 2006.
  • 7Park Y M, Chang B H. Numerical simulation of wind turbine scale effects by using CFD [ R ]. Washington DC: American Institute of Aeronautics and Astronautics, AIAA 2007-216, 2007.
  • 8Rooij R P, Arens E A. Analysis of the experimental and computational flow characteristics with respect to the augmented lift phenomenon caused by blade rotation [J ]. Journal of Physics: Conference Series, 2007, 75 ( 1 ) : 012021-1-11.
  • 9Potsdam M A. Unstructured mesh CFD aerodynamic analysis of the NREL Phase VI Rotor [R]. Washington DC : American Institute of Aeronautics and Astronautics, AIAA 2009-1221,2009.
  • 10Langtry R B, Gola J, Menter F R. Predicting 2D airfoil and 3D wind turbine rotor performance using a transition model for general CFD Codes [R]. Washington DC: American Institute of Aeronautics and Astronautics, AIAA 2006-0395, 2006.

二级参考文献13

  • 1Tangler J L, Somers D M. NREL airfoil families for HAWTs [ R ]. Colorado: National Renewable Energy Laboratory, 1995.
  • 2Yang S L, Chang Y L, Arici O. Incompressible Navier- Stokes computation of the NREL airfoils using a symmetric total variational diminishing scheme [J]. Journal of Solar Energy Engineering, 1994, 116(4): 174-182.
  • 3Yang S L, Chang Y L, Arici O. Navier-Stokes Computations of the NREL airfoil using a k-to turbulent model at high angles of attack [ J ]. Journal of Solar Energy Engineering, 1995, 117 (4) : 304-310.
  • 4Somers D M. Design and experimental resuhs for the S805 airfoil[R]. Colorado: National Renewable Energy Laboratory, 1997.
  • 5Somers D M. Design and experimental results for the S809 airfoil[R]. Colorado: National Renewable Energy Laboratory, 1997.
  • 6Wolfe W P, Ochs S S. CFD calculations of S809 aerodynamic characteristics [ R ]. Washington DC : American Institute of Aeronautics and Astronautics, AIAA 97-0973, 1997.
  • 7Langtry R B, Gola J, Menter F R. Predicting 2D airfoil and 3D wind turbine rotor performance using a transition model for general CFD codes [ R]. Washington DC: American Institute of Aeronautics and Astronautics, AIAA 2006-395, 2006.
  • 8Blazek J. Computational Fluid Dynamics Principles and Applications [ M ]. Oxford : Elsevier, 2001, 245-247.
  • 9Wilcox D C. Turbulence Modeling for CFD [ M ]. California: DCW Industries, Inc., 1993, 92--95.
  • 10Ramsay R F, Hoffmann M J, Gregorek G M. Effects of grit roughness and pitch oscillations on the $809 airfoil [ R ]. Colorado: National Renewable Energy Laboratory, 1995.

共引文献9

同被引文献48

  • 1叶建,邹正平,陆利蓬,杨琳.低雷诺数下翼型前缘流动分离机制的研究[J].北京航空航天大学学报,2004,30(8):693-697. 被引量:18
  • 2王晋军,冯立好,徐超军.合成射流控制圆柱分离及绕流结构的实验研究[J].中国科学(E辑),2007,37(7):944-951. 被引量:10
  • 3李俊峰.风光无限:中国风电发展报告2011[M].北京:中国环境科学出版社,2011:1-30.
  • 4于学兵,甄华翔.RNG κ-ε与SST κ-ω模型在汽车外流场计算中的比较[J].汽车科技,2007(6):28-31. 被引量:17
  • 5Abdelsalam A M, Boopathi K, Gomathinayagam S, et al. Experimental and numerical studies on the wake behavior of a horizontal axis wind turbine[J]. Journal of Wind Engineering & Industrial Aerody namies, 2014, 128(5) :54-65.
  • 6Kim B, Kim W, Lee S, et al. Developement and verification of a performance based optimal design software for wind turbine blades[J]. Renewable En- ergy, 2013, 54(6):166-172.
  • 7Diego G, Escdrpita A A, Hugo E, et al. Numerical validation of a finite element thin-walled beam model of a composite wind turbine blade[J]. Wind Ener- gy, 2012, 15(2):203-223.
  • 8Sezer-Uzol N, Long L N. 3-D time-accurate CFD simulations of wind turbine rotor flow fields[C] ff AIAA Paper, 2006-0394.
  • 9Nikolaou I G, Politis E S, Chaviaropoulos P K. Modelling the flow around airfoils equipped with vortex generators using a modified 2D Navier-Stokes solver[J]. Journal of Solar Energy Engineering, 2005, 127(2): 223-233.
  • 10Bazilevs Y, Hsu M C, Kiendl J, et al. 3D simula- tion of wind turbine rotors at full scale. Part II: Fluid-structure interaction modeling with composite blades [ J ]. International Journal for Numerical Methods in Fluids, 2011, 65(1-3) :236-253.

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部