期刊文献+

基于改进NSGA-Ⅱ的仿人机器人上楼梯运动规划方法

A method for the motion planning of humanoid robots' stepping upstairs based on an improved NSGA-Ⅱ
下载PDF
导出
摘要 针对当前仿人机器人运动优化算法多采用对能耗、稳定性及速度等单目标优化而存在一定的局限性的问题,提出了一种基于多目标优化的仿人机器人上楼梯运动优化方法。针对NSGA-Ⅱ——经典的带精英策略的非支配排序遗传算法(NSGA)的快速非支配排序效率较低的问题,提出了一种基于自调整二叉搜索树的改进NSGA-Ⅱ方法,并采用改进的NSGA-Ⅱ算法实现了仿人机器人上楼梯运动参数优化。通过仿真和实际实验对比了优化前后仿人机器人的能耗和稳定性。实验表明,采用这种方法能克服单目标优化的缺点,在同时满足多个目标需求的同时有效地实现仿人机器人上楼梯。 Based on the analysis of the certain limitations of current methods for optimization of humanoid robots' motion caused by their optimization of single objectives such as energy, stability and speed, a optimization method based on multi-objective optimization to optimize the motion parameters of a humanoid robot in stepping upstairs was presented. In consideration of the low efficiency of fast nondominated sorting of the NSGA-Ⅱ , a typical nondominated sorting genetic algorithm (NSGA) with the elitist tactics, an improved NSGA-Ⅱ method based on self-adjusting binary search trees was proposed, and by using it, the motion parameter optimization for a humanoid robot in stepping upstairs was achieved. The humanoid robot's energy consumption and stability before and after the optimization were measured and compared by computer simulations and experiment. The experimental results show that the use of this method can overcome the disadvantages of the single objective optimization, and effectively realize the humanoid robot' s motion planning when it stepping upstairs in the circumstances of meeting multiple objectives requirements.
出处 《高技术通讯》 CAS CSCD 北大核心 2014年第9期982-990,共9页 Chinese High Technology Letters
基金 863计划(2007AA041603) 国家自然科学基金(61075077) 黑龙江省自然科学基金(F201323)资助项目
关键词 仿人机器人 多目标优化 带精英策略的非支配排序遗传算法(NSGA—Ⅱ) 自调 整二叉搜索树 humanoid robot, multi-objective optimization, nondominated sorting genetic algorithm (NSGA) with the elitist tactics (NSGA)-Ⅱ, self-adjusting binary search trees
  • 相关文献

参考文献10

  • 1Gutmann J S,Fukuchi M,Fujita M.Stair climbing for humanoid robots using stereo vision.In:Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,Sendai,Japan,2004.1407-1413.
  • 2Sato T,Sakaino S,Ohashi E,et al.Walking trajectory planning on stairs using virtual slope for biped robots.IEEE Transactions on Industrial Electronics,2011,(58):1385-1396.
  • 3Sugahara Y,Ohta A,Lim H,et al.Walking up and down stairs carrying a human by a biped locomotor with parallel mechanism.In:Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,Edmonton,Canada,2005.1489-1494.
  • 4Mombaur K.Using optimization to create self-stable human-like running.Robotica,2009,(27):321-330.
  • 5Buschmann T,Lohmeier S,Ulbrich H,et al.Optimization based gait pattern generation for a biped robot.In:Proceedings of the 5th IEEE-RAS International Conference on Humanoid Robots,Tsukuba,Japan,2005.98-103.
  • 6Deb K,Pratap A,Agarwal S,et al.A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ IEEE Trans On Evolutionary Computation,2002,6 (2):182-197.
  • 7公茂果,焦李成,杨咚咚,马文萍.进化多目标优化算法研究[J].软件学报,2009,20(2):271-289. 被引量:399
  • 8Zitzler E,Laumanns M,Thiele L.SPEA2:Improving the strength Pareto evolutionary algorithm.In:Evolutionary Methods for Design,Optimization and Control with Applications to Industrial Problems.Berlin:Springer-Verlag,2002.95-100.
  • 9Sleator D D,Tarjan R E.Self-adjusting binary search trees,JACM,1985,32:652-686.
  • 10Corne D W,Jerram N R,Knowles J D,et al.PESA-Ⅱ:Region-based selection in evolutionary multi-objective optimization.In:Proceedings of the Genetic and Evolutionary Computation.San Francisco,USA,2001.283-290.

二级参考文献2

共引文献398

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部