期刊文献+

实时能耗监测及能耗预测系统研究与实现 被引量:5

The Research and Implementation of Energy Consumption Real-time Monitoring and Prediction System
下载PDF
导出
摘要 针对铝型材生产过程中能耗较大,传统人工采集能耗数据频率低,采集速度慢等问题,该文提出一种铝型材熔铸炉生产实时能耗监测及能耗预测系统。该系统一方面使用基于zigbee协议的无线传输通讯方式将生产现场电表、燃气表与交换机相连接,并通过网络接口数据发送至服务器,实现对生产能耗数据的实时监测;另一方面采用回归型支持向量机对历史生产数据进行学习,得到预测能耗模型,用于对当前生产能耗数据预测,及时发现生产中的能源损失、生产参数不当等异常现象。 Energy consumption of Production process of aluminum is greatly, and traditional manual energy consumption data collection frequency is inefficiently. In order to solve these problems, this paper proposes an energy consumption monitoring and prediction system on aluminum furnace production. A wireless communication based on ZigBee protocol is used to connect field meter, gas meter and switches, and energy consumption data are sent to server through network interface to achieve real-time monitoring of the production energy consumption data; on the other hand, using historical production data to train regression support vector machine, then the trained SVM model of energy consumption is used for energy consumption prediction. The ex-perimental result shows that our system can find the production of energy loss, improper production parameters of abnormal phe-nomenon and etc.
作者 罗铭强 梁鹏 LUO Ming-qiang, LIANG Peng (1.Xingfa Aluminum Holdings Limited, Foshan 528061,China; 2.School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou 510665, China)
出处 《电脑知识与技术》 2014年第10期6767-6770,共4页 Computer Knowledge and Technology
基金 国家科技支撑计划课题(2012BAF12810) 广东省教育部产学研结合项目(20128010500027)
关键词 能耗预测 实时能耗监测 回归型支持向量机 Energy consumption prediction Real-time Energy consumption monitoring Regression Support Vector Machine
  • 相关文献

参考文献7

  • 1Kordonowy D N.A Power Assessment of Machining Tools[J].Cambridge, MA :BSc thesis, Massachusetts Institute of Technology,2002.
  • 2Gutowski T, Murphy C,Allen D,et al.Environmentally Benign Manufacturing: Observations from Japan, Europe and the United States [J].Journal of Cleaner Production,2005,13:1-17.
  • 3Dahmus J B,Gutowski T C.An Environmental Analysis of Machining[C].ASME International Mechanical Engineering Congress and RD&D Expo,2004.
  • 4侯彬.考虑机器开关的并行机调度研究[J].工业工程与管理,2011,16(2):60-64. 被引量:11
  • 5Mouzona G,Mehmet B,Yildirima.A Framework to Minimise Total Energy Consumption and Total Tardiness on a Single Machine[J].International Journal of Sustainable Engineering, 2007,1 (2): 105-116.
  • 6樊龙,张文爱.基于Modbus协议的智能电表数据采集传输系统的实现[J].制造业自动化,2014,36(4):120-124. 被引量:19
  • 7杨爱人.基于能耗预测模型的能源管理系统研究与实现[D].广州:华南理工大学,2013.

二级参考文献21

  • 1孙云霄,陈颖.RS485总线在数据采集系统中的应用[J].工矿自动化,2006,32(4):75-76. 被引量:20
  • 2Qi X,Chen T, Tu F. Scheduling the maintenance on a single machine[J]. Journal of the Operational Research Society, 1999,50(10): 1071-1078.
  • 3Lee C Y,Chen Z L. Scheduling jobs and maintenance activities on parallel machines [J]. Naval Research Logistics, 2000, 47 (2) :145-165.
  • 4Allaoui H, Lamouri S, Artiba A, et al. Simultaneously scheduling n jobs and the preventive maintenance on the two- machine flow shop to minimize the makespan[J]. International Journal of Production Economics,2008,112(1) :161-167.
  • 5Berrichi A, Amodeo L, Yalaoui F, et al. Bi-objective optimization algorithms for joint production and maintenance scheduling: application to the parallel machine problem [J]. Journal of Intelligent Manufacturing, 2009,20 (4) : 389-400.
  • 6Vickson R G. Choosing the job sequence and processing times to minimize total processing plus flow cost on a single machine [J]. Operations Research, 1980,28(5): 1155-1167.
  • 7Chen Z L. Simultaneous job scheduling and resource allocation on parallel machines[J]. Annals of Operations Research, 2004, 129 (1-4):135-153.
  • 8Wang J B, Xia Z Q. Single machine scheduling problems with controllable processing times and total absolute differences penalties[J]. European Journal of Operational Research, 2007, 177(1) : 638-645.
  • 9Graham R L. Optimization and approximation in deterministic sequencing and scheduling: A survey[J]. Annals of Discrete Mathematics, 1979,5 : 287-326.
  • 10Pinedo M. Scheduling: Theory, Algorithms, and Systems[M]. 2 edition, New York: Prentice Hall, 2001.

共引文献25

同被引文献29

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部