期刊文献+

改进的乘积型核函数二次调频信号的参数估计

Parameter Estimation of Quadratic Frequency Modulated Signal Based on Improved Product Kernel Function
下载PDF
导出
摘要 该文提出一种基于改进乘积型核函数的二次调频信号的参数估计方法。首先,对信号乘以自身的共轭反转并做相位匹配变换,通过积累后信号最大值位置得到信号的调频率估计值;然后,再补偿掉原信号的调频率,对解调频(dechirp)后的信号构造新的乘积型核函数,并变换到2维时间-时延域,沿时间和时延轴分别做相位匹配变换和傅里叶变换,在变换后的调频率变化率-频率平面通过最大值的位置即可同时得到调频率变化率和中心频率的估计值,对补偿掉相位的信号取均值并求模得到幅度值,从而实现二次调频信号的参数估计和重构。可见,该方法避免了对所有相位参数的迭代搜索,提高了运算效率。最后,对单分量和多分量二次调频信号的仿真结果证明了该方法的有效性。 A new method for estimating parameters of quadratic frequency modulated signals is proposed basing on a product kernel function. Firstly, the signal is multiplied by its conjugate reverse signal with the phase-matching transformation being performed, and then the estimated value of the chirp rate can be obtained by searching one-dimension maximum position of accumulated signals. Secondly, the chirp rate of the signal is compensated and a new product kernel function for the dechirped signal is structured to transform it into the two-dimensional timelag domain, and the phase-matching transformation and FFT respectively are performed along time and lag axis. As a result, by the maximum searching in the new change rate of the chirp rate-frequency domain after transformation, the estimated values of both the change rate of the chirp rate and the center frequency can be obtained, with the phase of the signal being able to compensated and the amplitude estimated by calculating the magnitude of its average, thereby leading to the reconstruction of the signal. It is shown that the proposed method precludes the iterative search of all phase parameters and improves the operational efficiency. Finally, the paper presents the simulated results that confirm the effectiveness of this method.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第11期2621-2627,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61001211 61303035) 航空基金(20110181004) 中央高校基本科研业务费(K5051202016)资助课题
关键词 信号处理 乘积型核函数 二次调频信号 参数估计 相位匹配变换 FFT Signal processing Product kernel function Quadratic frequency modulated signals Parameterestimation Phase-matching transformation FFT
  • 相关文献

参考文献21

  • 1Zhang Lei, Qiao Zhi-jun, Xing Meng-dao, et al.. Highresolution ISAR imaging with sparse stepped-frequency waveforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4630-4651.
  • 2Blomberg A E A, Nilsen C C, Austeng A, et al.. Adaptive sonar imaging using aperture coherence[J]. IEEE Journal of Oceanic Engineering, 2013, 38(1): 98-108.
  • 3陈倩倩,徐刚,李亚超,邢孟道,保铮.短孔径ISAR方位定标[J].电子与信息学报,2013,35(8):1854-1861. 被引量:9
  • 4Hlawatsch F and Boudreaux-Bartels G F. Linear and quadratic time-frequency signal representations[J]. IEEE Signal Processing Magazine, 1992, 9(2): 21-67.
  • 5Spigai M, Tison C, and Souyris J. Time-frequency analysis in high-resolution SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(7): 2699-2711.
  • 6Oswald N, Stark B, Holliday D, et al.. Analysis of shaped pulse transitions in power electronic switching waveforms for reduced EMI generation[J]. IEEE Transactions on Industry Applications, 2011, 47(5): 2154-2165.
  • 7Lowry K, Roche J, Redfern M, et al.. A comprehensive assessment of gait accelerometry signals in time, frequency and time-frequency domains[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22(3): 603-612.
  • 8Galleani L. Time-frequency representation of MIMO dynamical systems[J]. IEEE Transactions on Signal Processing, 2013, 61(17): 4309-4317.
  • 9Cohen L. Time-frequency distributions a review [J]. Proceedings of the IEEE, 1989, 77(7): 941-981.
  • 10Boashash B and O’Shea P. Polynomial Wigner-Ville distributions and their relationship to time-varying higher-order spectra[J]. IEEE Transactions on Signal Processing, 1994, 42(1): 216-220.

二级参考文献18

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部