期刊文献+

利用曲率分析的三维网格质量评估方法 被引量:3

A 3-D Mesh Quality Assessment Metric via Analyzing Curvature
下载PDF
导出
摘要 由于顶点的曲率能够很好地反映3维网格的视觉特征,该文提出了一种利用曲率分析的3维网格质量评估方法。该方法首先估算各顶点的曲率,然后在每个顶点的邻域内构建一个曲率矩阵,并根据原始网格和失真网格对应曲率矩阵的奇异值差异评估顶点位置的失真,最后通过对这些局部失真的加权联合得到网格的整体失真。实验结果表明,相比于其他方法,该文提出的方法不但能够更准确地评估3维网格的质量,而且具有更好的鲁棒性。 In this paper, a novel metric is proposed to evaluate the 3-D mesh quality via analyzing curvature, since the curvature describes well the visual characteristics of a 3-D mesh. Firstly, the curvature at each vertex is estimated, then a curvature matrix is constructed in the neighbourhood of each vertex, and the local distortion at each vertex is measured in terms of the differences between the singular values of the curvature matrix in the original mesh and that of the corresponding matrix in the distorted mesh. Finally, the global distortion is obtained by weighted combination of the local distortions. Experimental results reveal that the proposed metric not only achieves superior performance in prediction accuracy over all the other competing metrics, but also has very good robustness and stability.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第11期2781-2785,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61371089) 中央高校基本科研业务费专项资金(72115612 K5051301020) 高等学校学科创新引智计划(B08038)资助课题
关键词 信息处理 3维网格 质量评估 曲率 奇异值分解 Information processing 3-D mesh Quality assessment Curvature Singular Value Decomposition(SVD)
  • 相关文献

参考文献16

  • 1Maglo A, Courbet C, Alliez P, et al.. Progressive compression of manifold polygon meshes[J]. Computers & Graphics, 2012, 36(5): 349-359.
  • 2Peng Jing-liang, Kim C S, and Kuo C C J. Technologies for 3D mesh compression: a survey[J]. Journal of Visual Communication and Image Representation, 2005, 16(6): 688-733.
  • 3Campomanes-Alvarez B R, Damas S, and Cordon O. Mesh simplification for 3D modeling using evolutionary multi-objective optimization[C]. Proceedings of the IEEE Congress on Evolutionary Computation, Brisbane, 2012: 2661-2668.
  • 4Berjon D, Moran F, and Manjunatha S. Objective and subjective evaluation of static 3D mesh compression[J]. Signal Processing: Image Communication, 2013, 28(2): 181-195.
  • 5Bulbul A, Capin T, Lavoue G, et al.. Assessing visual quality of 3D polygonal models[J]. IEEE Signal Processing Magazine,2011, 28(6): 80-90.
  • 6Corsini M, Larabi M C, Lavoue G, et al.. Perceptual metrics for static and dynamic triangle meshes[J]. Computer Graphics Forum, 2013, 32(1): 101-125.
  • 7Cignoni P, Rocchini C and Scopigno R. Metro: measuring error on simplified surfaces[J]. Computer Graphics Forum,1998, 17(2): 167-174.
  • 8Lavoue G, Drelie Gelasca E, Dupont F, et al.. Perceptually driven 3D distance metrics with application to watermarking [C]. Proceeding of the SPIE Applications of Digital Image Processing XXIX, San Diego, 2006, 6312: 63120L-1-12.
  • 9Lavoue G. A multiscale metric for 3D mesh visual quality assessment[J]. Computer Graphics Forum, 2011, 30(5): 1427-1437.
  • 10Corsini M, Drelie Gelasca E, Ebrahimi T, et al.. Watermarked 3D mesh quality assessment[J]. IEEE Transactions on Multimedia, 2007, 9(2): 247-256.

同被引文献9

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部