摘要
背景:生物型股骨柄假体无菌松动是全髋关节置换失败的主要因素,减少无菌松动的先决条件是增加股骨柄假体在股骨髓腔中的填充率。目的:得到定制式股骨柄假体在髓腔中的填充率,验证计算机辅助设计/计算机辅助制造/工业机器人加工(CAD/CAM/Robotic)集成方法和机器人磨削的有效性。方法:利用CT数据重建股骨髓腔三维模型,在此三维模型基础上设计股骨柄假体的柄体,依据标准直柄股骨柄假体近端模型设计股骨柄假体的其余部分。将设计的股骨柄假体模型导入CAD/CAM/Robotic集成系统生成机器人磨削轨迹,利用该轨迹对股骨柄假体进行磨削加工。将加工好的股骨柄假体与股骨髓腔匹配,分析股骨柄假体在髓腔中的填充率。结果与结论:实验结果表明,定制式股骨柄假体在髓腔中有良好的填充率,髓腔的解剖结构可以阻止股骨柄假体的扭转,获得股骨柄假体在髓腔中的稳定固定。
BACKGROUND:In total hip replacements, aseptic loosening of uncemented femoral hip prosthesis is the main reason for the failure of artificial hip replacement, the prerequisite of reducing aseptic loosening of prosthesis is to increase fil ing area of femoral prosthesis in femoral cavity. 〈br〉 OBJECTIVE:To obtain the fil ing rate of customized femoral prosthesis in femoral cavity and verify the validity of the methods of CAD/CAM/Robotic integration and the robot grind. 〈br〉 METHODIn this paper, the CT data of femur were used to reconstruct three-dimensional model of femoral cavity. According to this model, a custom uncemented femoral hip prosthesis was designed, then the model of this custom prosthesis was imported into the CAD/CAM/Robotic software to generate cut path. After the cut path was imported into the robotic control er, the custom prosthesis can be fabricated, then this custom prosthesis was inserted into the femoral cavity, and the fil ing result of the custom prosthesis in femoral cavity was analyzed. 〈br〉 RESULTS AND CONCLUSION:The experiment results showed that the customized prosthesis in femoral cavity achieved good fil ing result, the structure of femoral cavity resisted the rotation of the customized prosthesis in femoral cavity, and the customized prosthesis obtained stable fixation in the femoral cavity.
出处
《中国组织工程研究》
CAS
CSCD
2014年第40期6413-6418,共6页
Chinese Journal of Tissue Engineering Research
关键词
植入物
人工假体
股骨柄假体
数字化骨科
定制
集成方法
CAD/CAM/Robotic
bioprosthesis
prosthesis design
computer-assisted design
imaging,three-dimensional