期刊文献+

二阶非线性常微分方程的一种改进再生核方法

An Improved Reproducing Kernel Method for the Solutions to the Second-Order Nonlinear Ordinary Differential Equations
下载PDF
导出
摘要 针对传统再生核方法求解二阶非线性微分方程只是一阶的方法,收敛速度慢的问题.通过研究再生核方法的误差估计,采用外推技巧消去了误差余项中的低阶无穷小量,给出了求解二阶非线性常微分方程初值问题的一种改进的再生核方法,在只增加少量计算的条件下使得收敛速度可以达到至少三阶.减少了原再生核方法的计算量,提高了收敛速度,数值算例表明该方法在求解非线性问题的有效性. According to the slow convergence of the traditional reproducing kernel method,which is a first-order method for solving second-order nonlinear differential equation,through the research of the error estimation of the reproducing kernel method,using the extrapolation technique to eliminate the low order infinitesimal in error estimation,an improved reproducing kernel method is given to solve the problems of second-order nonlinear ordinary differential equations with initial values,which convergent speed can reach at least third-order,only adding a small amount of calculation.The calculation of the reproducing kernel method is greatly reduced,the rate of its convergence is improved,and the validity of solving nonlinear problems is verified by numerical examples.
出处 《哈尔滨理工大学学报》 CAS 2014年第5期31-34,39,共5页 Journal of Harbin University of Science and Technology
基金 黑龙江省教育厅科学技术研究项目(11521045) 黑龙江省自然科学基金(H200811)
关键词 再生核 非线性 外推法 常微分方程 初值问题 reproducing kernel nonlinear extrapolation method ordinary differential equation initial-value problem
  • 相关文献

参考文献21

  • 1COLEMAN J P,DUXBURY S C.Mixed Collocation Methods for y"=f(t,y)[J].J.Comp.Appl.Math,2000,126(1/2):47-75.
  • 2GAUTSCHI W.Numerical Integration of Ordinary Differential Equations Based on Trigonometric Polynomials[J].Numer.Math,1961,3(1):381-397.
  • 3LAMBERT J D,WATSON I A.Symmetric Multistep Methods for Periodic Initial Value Problems[J].J.Inst.Math.Appl.,1976,18(2):189-202.
  • 4SIMOS T E.Exponentially-fitted Runge-Kutta-Nystrom Method for the Numerical Solution of Initial Value Problems with Oscillating Solution[J].Appl Math Lett,2002,15(2):217-225.
  • 5CASH J R.High Order P-stable Formulae for the Numerical Integration of Periodic Initial Value Problems[J].Numer.Math,1981,37(3):355-370.
  • 6CHAWLA M M,RAO P S.High-accuracy P-stable Methods for y"=f(t,y)[J].IMA.J.Numer.Anal.,1985,5(2):215-220.
  • 7DAELE M Van,HECKE H De,MEYER H De,et al.Rerghe.On a Class of P-stable Mono-implict Runge-Kutta-Nystrom Methods[J].Appl.Numer.Math.,1998,27(1):69-82.
  • 8FRANCO J M,PALACIOS M.High Order P-stable Multistep methods[J].J.Comp.Appl.Math.,1990,30(1):1-10.
  • 9HAIRER E.Unconditionally Stable Methods For Second Order Differential Equations[J].Numer.Math.,1979,32 (4):373-379.
  • 10PAGAGEORIGIOU G,FAMELIS Th,TSITOURAS Ch.A P-stable Singly Diagonally Implicit Runge-Kutta-Nystrom Method[J].Numer.Algo,1998,17(3):345-353.

二级参考文献4

  • 1JUAN J. Nito OKRASINSKI W. Uniqueness and Approximation of Some Nonlinear Diffusion Probloms [ J ]. Journal of Mathematical anallysis and Application, 1997,210:231 - 240.
  • 2OKRASINSKI W, VILA S. Approximations of Solutions to Some Second order Nonlinear Differential Equation [ J ]. Nonlinear Analysis, 1999,35 : 1061 - 1072.
  • 3CUI M G, LIN Y Z. Nonlinear Numerical Analysis in the Reproducing Kernel Space [ M ]. Nova Science Publisher, New York, 2008.
  • 4Jian-Ping Yan,Ben-Yu Guo,无.A Collocation Method for Initial Value Problems of Second-Order ODEs by Using Laguerre Functions[J].Numerical Mathematics(Theory,Methods and Applications),2011,4(2):283-295. 被引量:4

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部