期刊文献+

基于T-S模糊模型的球磨机料位测量研究 被引量:2

Soft Sensor for Ball Mill Level Based on T-S Fuzzy model
下载PDF
导出
摘要 针对采用振动法测量球磨机料位时,振动信号和料位之间存在非线性和时变性,采用传统方法存在测量精度低、稳定性差的问题,提出基于T-S模糊模型的球磨机料位表示和测量的方法。首先利用减法聚类对振动信号的功率谱特征值进行模糊前件辨识,确定模糊概念和规则数;再用最小二乘估计辨识后件参数;最后,利用模糊推理方法实现球磨机料位的软测量。在小型球磨机上的试验结果验证了T-S模糊模型对球磨机料位测量的有效性,与传统方法相比,T-S模糊模型方法具有测量精度高、稳定性好的特点。 When the ball mill level is measured by vibration, the vibration signals are nonlinear and time-varying. In order to deal with the problem of low precision and poor stability in traditional methods, the T-S fuzzy model is applied to represent and measure the level of ball mill. Firstly, the subtraction clustering is used to make the fuzzy antecedent recognition of vibration signal's power spectral eigenvalues, and the fuzzy concepts and rules are identified. Then the minimum variance estimation is used to identify the seccedent parameters. Finally, the fuzzy reasoning method is applied to achieve the soft measurement of ball mill. Compared the experimental measurement with the traditional methods, the experimental results demonstrate the high-precious and high-stable characteristics of the T-S fuzzy model method.
出处 《计算机仿真》 CSCD 北大核心 2014年第11期328-331,344,共5页 Computer Simulation
基金 国家自然科学基金项目(60975032) 山西省自然科学基金项目(2011011012-2)
关键词 球磨机 料位 模糊模型 减法聚类 Ball mill Fill level Fuzzy model Subtractive clustering
  • 相关文献

参考文献5

二级参考文献32

共引文献27

同被引文献30

  • 1曹晖,王苗苗,贾立新,张彦斌.基于模糊自调整和采样模糊控制的磨机负荷控制策略[J].中南大学学报(自然科学版),2013,44(S1):255-259. 被引量:8
  • 2Anass B,Gilles M,Jose R.Non-linear dynamic system identification:a multimodel approach[J].International Journal of Control,1999,72(7):591-604.
  • 3Yoo C K,Vanrolleghem P A,Lee I B.Nonlinear modeling and adaptive monitoring with fuzzy and multivariate statistical methods in biological wastewater treatment plants[J].Journal of Biotechnology,2003,105(1):135-163.
  • 4Lee D S,Vanrolleghem P A,Park J M.Parallel hybrid modeling methods for a full-scale cokes wastewater treatment plant[J].Journal of Biotechnology,2005,115(3):317-328.
  • 5IWA task group of mathematical modeling for design and operation of biological wastewater treatment.Activated Sludge Models ASM1,ASM2,ASM2d and ASM3[M].Shanghai:Tongji University Press,2002.
  • 6Ekama G,Dold P L,Marais G R.Procedures for determining influent COD fractions and the maximum specific growth rate of heterotrophs in activated sludge systems[J].Water Science and Technology,1986,18(6):91-114.
  • 7Sperandio M,Etienne P.Estimation of wastewater biodegradable COD fractions by combining respirometric experiments in various So/Xo ratios[J].Water Research,2000,34(4):1233-1246.
  • 8Hu Z Q,Chandran K,Smets B F,et al.Evaluation of a rapid physical-chemical method for the determination of extant soluble COD[J].Water Research,2002,36:617-624.
  • 9EFOR.Home page for the EFOR simulator[EB/OL].[2015-05-10].http://www.efor.dk/.
  • 10Niu D P,Wang F L,Zhang L L,et al.Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression[J].Chemometrics and Intelligent Laboratory Systems,2011,105(1):125-130.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部