摘要
从Sogou查询日志中选取样本查询且进行人工标注,通过对标注后新闻查询的分析,提出能用于识别新闻意图的新特征,即查询表达式特征、查询随时间分布特征以及点击结果特征。根据这3个特征,利用决策树分类器实现查询中新闻意图的自动识别,结果发现:1新闻类查询的查询目标主要集中在特定主题信息以及娱乐类信息方面,其查询主题大多为娱乐、政治、体育与经济类信息;2相对非新闻查询,新闻查询具有更可能包含实体、随时间分布波动较大、点击结果之间相似度更高的特点;3本方法对查询中新闻意图的识别效果较好,其宏平均准确率、召回率、F值分别为0.76、0.73、0.74。
This paper selects sample queries from Sogou query log, and makes these queries labeled by humans. Based on the analysis of the labeled news queries, we propose three novel features for news intent prediction, including query expression, a query distribution over time and clicked results. Finally, we apply the decision tree method to perform the task of automatic identification of news queries. Finally, experimental results show that : ( 1 ) Goals of news query are supposed to obtain information for a particular topic or some entertainment information, and search topics of news queries tend to be entertainment, economy, politics and sports. (2) Compared with non-news queries, new queries are likely to have named entities, larger fluctuation in the query distribution over time, and higher degree of similarity among clicked results. (3) Encouraging results of news identification are achieved, and the precision, recall, F-score for the query classification are 0.76,0.73 and 0.74, respectively.
出处
《图书情报工作》
CSSCI
北大核心
2014年第20期82-90,共9页
Library and Information Service
基金
国家自然科学基金面上项目"基于语言模型的通用实体检索建模及框架实现研究"(项目编号:71173164)
国家社会科学基金青年项目"基于情景分析的网络舆情事件应急管理动态调控机制研究"(项目编号:13CGL132)研究成果之一
关键词
查询意图
新闻查询
新闻意图
查询分类
query intent news queries news intent query classification