摘要
将迁移的随机特性引入逆P-集合(XˉF,XˉFˉ),给出了逆P(ρ(σ),η(τ))-集合的概念与结构;讨论了内逆P(ρ(σ),η(τ))-集合与逆P-集合的关系,即逆P-集合是逆P(ρ(σ),η(τ))-集合的特例,逆P(ρ(σ),η(τ))-集合是逆P-集合的推广;给出逆P(ρ(σ),η(τ))-集合的交集、并集、补集与差集四种运算,讨论了逆P(ρ(σ),η(τ))-集合的代数性质。
Based on the inverse P-sets ( XˉF,XˉFˉ) , the concept and structure of inverse P(ρ(σ),η(τ))-sets with random trans-lation characteristics are proposed. The relationship between inverse P(ρ(σ),η(τ))-sets and inverse P-sets is discussed, which shows P(ρ(σ),η(τ))-sets are the general forming of inverse P-sets, while inverse P-sets are a special case of P(ρ(σ),η(τ))-sets. Four operations including intersection, union set, complementary set and difference set are presented. Furthermore the algebra feature about inverse P(ρ(σ),η(τ))-sets is given.
出处
《计算机工程与应用》
CSCD
2014年第21期129-132,共4页
Computer Engineering and Applications
基金
山东省自然科学基金(No.ZR2010AL019)
德州学院科技发展计划项目(No.311674)