期刊文献+

不同交通模式下CO和NOx的暴露水平研究 被引量:5

Exposure to CO and NO_x in different transport modes
下载PDF
导出
摘要 为研究由于交通模式的差异引起的暴露水平的变化,将监测设备安装在检测车上,检测车以差异的速度行驶模拟出行者在城市道路中不同交通模式下的通行过程.在2013年7~8月的10个采样日中,保持监测车的行驶速度分别为5,15,30km/h依次模拟行人、自行车和电动车在城市道路上行驶,移动检测值为该交通模式下的污染暴露浓度.结果显示步行时平均暴露水平最高,其次为自行车和电动车模式.在3种道路模拟场景中,暴露水平均值由高到低依次为主干路〉快速路〉支路.与文献结果对比,CO的暴露水平模拟效果优于NOx,且该模拟方法的效率优于传统研究方法. To characterize the difference of exposure level when traveling on different traffic modes, measuring devices were installed on a test vehicle, to simulate people's traverse process over different transport modes at different moving speeds. In 10 sampling days in July and August, 2013, three transport modes included foot, bicycle and electric motor were simulated by test vehicle moving at 5km/h, 15km/h and 30km/h in the urban area, respectively. Mobile measurement represented the exposure level of corresponding transport modes. Results indicated that peak exposure happened in arterial roads with expressway and bypass follow, and exposure level in the holidays were higher than that of weekdays. Comparison of mobile measurement results with literature results indicated that simulation performance of exposure to CO was superior to NOx, taus this simulation method was more effective than the traditional method.
出处 《中国环境科学》 EI CAS CSCD 北大核心 2014年第11期2734-2740,共7页 China Environmental Science
基金 国家“863”项目(2012AA063303)
关键词 移动监测车 一氧化碳(CO) 氮氧化物(NOx) 模拟暴露水平 道路环境 mobile monitoring platform carbon monoxide nitrogen oxide simulation of exposure level road environment
  • 相关文献

参考文献33

  • 1Pope III C A, Burnett R T, Thun M J, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution[J].JAMA: the Journal of the American Medical Association, 2002,287(9):1132-1141.
  • 2Brunekreef B, Holgate S T. Air pollution and health[J].The Lancet, 2002,360(9341):1233-1242.
  • 3Samoli E, Touloumi G, Schwartz J, et al. Short-term effects of carbon monoxide on mortality: an analysis within the APHEA project[J].Environmental Health Perspectives, 2007,115(11):1578.
  • 4Dons E, Int Panis L, Van Poppel M, et al. Personal exposure to Black Carbon in transport microenvironments[J].Atmospheric Environment, 2012,55:392-398.
  • 5Houston D, Wu J, Yang D, et al. Particle-bound polycyclic aromatic hydrocarbon concentrations in transportation microenvironments[J].Atmospheric Environment, 2013,71:148-157.
  • 6Kaur S, Nieuwenhuijsen M J, Colvile R N. Fine particulate matter and carbon monoxide exposure concentrations in urban street transport microenvironments[J].Atmospheric Environment, 2007, 41(23):4781-4810.
  • 7Both A F, Westerdahl D, Fruin S, et al. Exposure to carbon monoxide, fine particle mass, and ultrafine particle number in Jakarta, Indonesia: effect of commute mode[J].Science of the Total Environment, 2013,443:965-972.
  • 8Dons E, Temmerman P, Van Poppel M, et al. Street characteristics and traffic factors determining road users' exposure to black carbon[J].Science of the Total Environment, 2013,447:72- 79.
  • 9Wu D-L, Lin M, Chan C Y. Influences of commuting mode, air conditioning mode and meteorological parameters on fine particle (PM2.5) exposure levels in traffic microenvironments[J].Aerosol and Air Quality Research, 2013,13(2):709-720.
  • 10Ragettli M S, Corradi E, Braun-fahrl Nder C, et al. Commuter exposure to ultrafine particles in different urban locations, transportation modes and routes[J].Atmospheric Environment, 2013,77:376-384.

二级参考文献103

共引文献53

同被引文献74

引证文献5

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部