期刊文献+

结合SOM的关联规则挖掘研究 被引量:1

Research on association rule based on SOM
下载PDF
导出
摘要 为了实现在海量数据中的审计线索的快速发现,通过数据挖掘FMA算法对被审数据和审计专家经验库进行关联规则快速提取;再利用自组织神经网络改良CLARANS算法对审计专家经验库抽取的规则划分出相似规则群;然后通过对被审单位关联规则集合和专家经验的相似规则群进行相对强弱、趋近率和价值率的比较,最终得到审计线索集合。 In order to achieve the audit trail of the massive data quickly found through data mining FMA algorithms to quickly extract trial data and audit expertise library association rules;re-use of self-organizing neural network improved CLARANS algorithm to extract audit expertise library divide a similar rule base rules;then by trial set of association rules and expert experience similar rules group relative strength, the approach value and the different rate of comparing the resulting set of audit trail.
出处 《计算机工程与应用》 CSCD 2014年第22期154-157,179,共5页 Computer Engineering and Applications
基金 江苏省公共工程审计重点实验室开放课题(No.20201201213) 江苏省审计信息工程重点实验室开放课题(No.AIE201205) 国家自然科学基金(No.70971067 No.71271117)
关键词 关联规则挖掘 自组织神经网络 审计线索 association rule mining audit trail
  • 相关文献

参考文献10

二级参考文献39

  • 1杨剑敏,方思行.一种基于关联矩阵的时态关联规则挖掘算法[J].微计算机信息,2006,22(04X):229-231. 被引量:5
  • 2姜华,孟志青,肖建华,彭丽芳,田密.一种时态近似周期的数据挖掘研究[J].计算机工程,2006,32(22):61-63. 被引量:5
  • 3郭菁,郭薇,周洞汝.基于受限移动对象当前及将来时刻检索的时空索引结构研究[J].小型微型计算机系统,2007,28(2):318-321. 被引量:2
  • 4[1]Agrawal R,Imielinski T,Swami A N.Mining association rules between sets of items in large databases[A].Peter B,Sushil J.Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data[C].Washington D C:ACM Press,1993.207-216.
  • 5[2]Agrawal R,Srikant R.Fast algorithms for mining association rules in large databases[A].Jorge B B,Matthias J,Carlo Z.VLDB'94,Proceedings of the 20th International Conference on Very Large Data Bases[C].Santiago de Chile: Morgan Kaufmann,1994.487-499.
  • 6[3]Brin S,Motwani R,Ullman J D,et al.Dynamic itemset counting and implication rules for market basket data[A].Joan P.Proceedings ACM SIGMOD International Conference on Management of Data[C].Tucson,Arizona,USA: ACM Press,1997.265-264.
  • 7[4]Park J S,Chen M S,Yu P S.An effective hash based algorithm for mining association rules[A].Michael J C, Donovan A S.Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data[C].San Jose,California: ACM Press,1995.175-186.
  • 8[5]Han J,Fu Y.Discovery of multiple-level association rules from large databases[A].Umeshwar D,Peter M D G,Shojiro N.VLDB'95,Proceedings of 21th International Conference on Very Large Data Bases[C].Zurich,Switzerland: Morgan Kaufmann,1995.399-431.
  • 9[6]Savasere A,Omiecinski E,Navathe S.An efficient algorithm for mining association rules in large databases[A].Umeshwar D,Peter M D G,Shojiro N. VLDB'95,Proceedings of 21th International Conference on Very Large Data Bases[C].Zurich,Switzerland: Morgan Kaufmann,1995.432-443.
  • 10[7]Han J,Pei J,Yin J.Mining frequent patterns without candidate generation[A].Weidong C,Teffrey F N,Philip A B.Proceeding 2000 ACM SIGMOD International Management of Data (SIGMOD'00)[C].Dallas,TX: ACM Press,2000.1-12.

共引文献68

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部