期刊文献+

微通道内催化表面气泡生长及脱离的可视化实验 被引量:1

Visualization experiments of bubble growth and detachment on catalytic surface in a microchannel
下载PDF
导出
摘要 采用聚二甲基硅氧烷材料(PDMS)制备矩形截面的微通道,并在微通道壁面上沉积Mn O2作为催化剂,采用高速摄影仪对通流过程中过氧化氢催化分解生成氧气气泡的过程进行了可视化实验研究,分析了反应物的浓度和流量对气泡生长速度及脱离直径的影响。结果表明:气泡在微通道内催化表面的生长及脱离过程呈周期性变化的趋势;气泡生长可以分为快速生长和缓慢生长两个阶段,当t<3 s时气泡处于快速生长阶段,催化反应主要受动力学控制,当t≥3 s时扩散控制占主要地位,气泡生长速度随反应物浓度的升高而增大;气泡脱离直径受反应物浓度影响较小,受反应物流量影响较大,而且随液相反应物Reynolds数的增大线性降低。 A rectangular microchannel was fabricated with polydimethylsiloxane (PDMS) material and MnO2 catalysts were deposited on the wall of the microchannel. The growth and detachment process of oxygen bubbles generated by the catalytic reaction of H_2O_2 solution were recorded by a high speed camera. The effects of reactant concentration and flow rate on bubble growth rate and detachment diameter were also analyzed. The growth and detachment process of bubbles generated on the catalytic surface in the microchannel occurred periodically. Moreover, the bubble growth consisted of two processes, the initial fast growth process and the later slow growth process. Before 3 s, the generated bubbles were in a fast growth period, and reaction kinetics dominated the process. However, after 3s, reaction rate was controlled by diffusion, resulting in the fact that bubble growth rate increased with increasing reactant concentration. In addition, bubble detachment diameter was slightly affected by reactant concentration, while it was significantly affected by reactant flow rate and dropped linearly as Reynolds number increased.
出处 《化工学报》 EI CAS CSCD 北大核心 2014年第12期4678-4683,共6页 CIESC Journal
基金 国家自然科学基金项目(51376203 51276208) 国家杰出青年科学基金项目(51325602) 高等学校博士学科点专项科研基金项目(20120191110010)~~
关键词 微通道 催化 反应 气泡生长 脱离直径 microchannels catalysis reaction bubble growth detachment diameter
  • 相关文献

参考文献22

  • 1Mills P L,Quiram D J,Ryley J F. Microreactor technology and process miniaturization for catalytic reactions-a perspective on recent developments and emerging technologies [J]. Chemical Engineering Science, 2007, 62(24);6992-7010.
  • 2骆广生,王凯,徐建鸿,吕阳成,王玉军.微化工系统内多相流动及其传递反应性能研究进展[J].化工学报,2010,61(7):1621-1626. 被引量:22
  • 3Nagy K D, Jensen K F. Catalytic processes in small scale flow reactors: status and opportunities [J]. Chimica Oggi/Chemistry Today, 2011,29(4):18-21.
  • 4Kobayashi J, Mori Y,Okamoto K, Akiyama R, Ueno M, Kitamori Ti Kobayashi S. A microfluidic device for conducting gas-liquid-solid hydrogenation reactions [J]. Science, 2004, 304(5675):1305-1308.
  • 5Dong Z, Xu J, Jiang F, Liu P. Numerical study of vapor bubble effect on flow and heat transfer in microchannel [J]. International Journal of Thermal Sciences, 2012, 54:22-32.
  • 6Gedupudi S, Zu Y Q, Karayiannis T Q Kenning D B R, Yan Y Y. Confined bubble growth during flow boiling in a mini-/micro-channel of rectangular cross-section (1): Experiments and I-D modelling [J]. International Journal of Thermal Sciences, 2011, 50(3):250-266.
  • 7Zu Y Q, Yan Y Y, Gedupudi S, Karayiannis T Q Kenning D B R. Confined bubble growth during flow boiling in a mini-/micro-channel of rectangular cross-section ( II ): Approximate 3-D numerical simulation [J], International Journal of Thermal Sciences, 2011,50(3):267-273.
  • 8Peng J, Zhang Z Y, Niu H T. A 3D two-phase model for a membraneless fuel cell using decomposition of hydrogen peroxide with Y-shaped microchannel [J]. ECS Trans., 2013, 50(2):77-86.
  • 9Shyu J C, Wei C S, Lee C J, Wang C C. Investigation of bubble effect in microfluidic fuel cells by a simplified microfluidic reactor [J]. Applied Thermal Engineering, 2010, 30(13):1863-1871.
  • 10Hasegawa S,Shimotani K, Kishi K, Watanabe H. Electricity generation from decomposition of hydrogen peroxide [J]. Electrochemical and Solid-state Letters, 2005, 8(2): A119-A121.

二级参考文献58

  • 1李少伟,陈桂光,骆广生.膜分散小型反应器制备ZrO2纳米颗粒的实验研究[J].过程工程学报,2004,4(z1):408-412. 被引量:8
  • 2陈桂光,骆广生,杨雪瑞,孙怡文,汪家鼎.微混合沉淀技术制备纳米TiO_2颗粒[J].无机材料学报,2004,19(5):1163-1167. 被引量:5
  • 3Nisisako T, Torii T, Higuchi T. Droplet formation in a microchannel network. Lab Chip, 2002, 2 (1) : 24-26.
  • 4Anna S L, Bontoux N, Stone H A. Formation of dispersions using " flow focusing " in microchannels. Appl. Phys. Lett. , 2003, 82 (3): 364-366.
  • 5Xu J H, Li S W, Lan W J, Luo G S. Microfluidie approach for rapid interracial tension measurement. Langmuir, 2008, 24 (19): 11287-11292.
  • 6Link D R, Anna S L, Weitz D A, Stone H A. Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett., 2004, 92 (5): 054503.
  • 7Xu J H, Li S W, Chen G G, Luo G S. Formation of monodisperse microbubbles in a microfluidic device. AIChE J., 2006, 52 (6): 2254-2259.
  • 8Kim H, Luo D, Link D, Weitz D A, Marquez M, Cheng Z D. Controlled production of emulsion drops using an electric field in a flow-focusing microfluidic device. Appl. Phys. Lett., 2007, 91 (13): 133106.
  • 9Tan J, Xu J H, Li S W, Luo G S. Drop dispenser in a cross-junction microfluidic device: scaling and mechanism of break-up. Chem. Eng. J. , 2008, 136 (2/3) : 306-311.
  • 10Humphry K J, Ajdari A, Fernandez Nieves A, Stone H A, Weitz D A. Suppression of instabilities in multiphase flow by geometric confinement. Phys. Rev. E, 2009, 79 (5): 056310.

共引文献22

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部