期刊文献+

光滑化牛顿法求解广义绝对值方程 被引量:2

SMOOTHING NEWTON METHOD FOR GENERALIZED ABSOLUTE VALUE EQUATION
下载PDF
导出
摘要 本文研究了广义绝对值方程Ax-|Bx-c|=b的求解问题.利用一个光滑的NCP函数将广义绝对值方程转化为等价的光滑方程组,获得了算法全局超线性收敛性的结果.并给出数值实验验证了理论分析及算法的有效性. In this article, we study the generalized absolute value equation (GAVE)Ax-|Bx-c|=b. By using a smoothing NCP-function, the GAVE can be reformulated as theequivalent smoothing functions. Under suitable assumptions, we obtain the global and superlinearconvergence results of the proposed algorithm. Numerical experiments indicate that the theoreticanalysis and the proposed algorithm are feasible and effective.
出处 《数学杂志》 CSCD 北大核心 2014年第6期1125-1133,共9页 Journal of Mathematics
基金 中央高校基本科研业务费专项基金(2010LKSX01)
关键词 广义绝对值方程 垂直线性互补问题 光滑函数 牛顿法 generalized absolute value equation vertical linear complementarity problems smoothing functions Newton method
  • 相关文献

参考文献22

  • 1Rohn J. Systems of linear interval equations [J]. Linear Algebra and Its Application, 1989, 126(11): 39-78.
  • 2Mangasarian O L, Meyer R R. Absolute value equations [J]. Linear Algebra and Its Application, 2006, 419(5): 359-367.
  • 3Hu Shenglong, Huang Zhenghai. A note on absolute value equations [J]. Optimization Letters, 2010, 4(3): 417-424.
  • 4Mangasarian O L. A generalized Newton method for absolute value equations [J]. Optimization Letters, 2009, 3(1): 101-108.
  • 5Caccetta L, Qu Biao, Zhou Guanglu. A globally and quadratically convergent method for absolute value equations [J]. Computation Optimization Application, 2011, 48(1): 45—58.
  • 6王爱祥,王海军.绝对值方程的区间算法[J].贵州大学学报(自然科学版),2010,27(2):7-10. 被引量:15
  • 7Wang Aixiang, Wang Haijun, Deng Yongkun. Interval algorithm for absolute value equations [J]. Central European Journal Mathematics, 2011, 9(5): 1171-1184.
  • 8Wang Haijun, Liu Hao, Cao Suyu. A verification method for enclosing solutions of absolute value equations [J]. Collectanea Mathematica, DOI: 10.1007/sl3348-011-0057-5.
  • 9雍龙泉,孙培民,高凯.极大熵自适应微粒群混合算法求解绝对值方程[J].计算机应用研究,2011,28(7):2479-2481. 被引量:11
  • 10Yong Longquan, Liu Sanyang, Zhang Shemin, Deng Fangan. Smoothing Newton method for absolute value equations based on aggregate function [J]. International Journal of the Physical Sciences, 2011, 6(23): 5399-5405.

二级参考文献71

  • 1李兴斯.一类不可微优化问题的有效解法[J].中国科学(A辑),1994,24(4):371-377. 被引量:137
  • 2Rohn J.A theorem of the alternatives for the equation Ax+B|x|=b[J].Linear and Multilinear Algebra,2004,52(6):421-426.
  • 3Mangasarian O L,Meyer R R.Absolute value equations[J].Linear Algebra Appl,2006(419):359-367.
  • 4Mangasarian O L.A generalized Newton method for absolute value equations[J].Optim Lett,2009(3):101-108.
  • 5Moore R E.Methods and applications of interval analysis[M].Philadelphia:SIAM,1979.
  • 6Moore R E,Kearfott R B,Cloud M J.Introduction to interval analysis[M].Philadelphia:SIAM,2009.
  • 7Shen Zuhe.A class of componentwise Krawczyk-Moore type iteration methods[J].Computing,1989(41):149-152.
  • 8Mangasarian O, Meyer R. Absolute value equations[J]. Linear Algebra Appl, 2006, 419: 359-367.
  • 9Rohn J. A theorem of the alternatives for the equation Ax+B|x|=b[J]. Linear and Muhilinear Algebra, 2004, 52(6): 421-426.
  • 10Prokopyev O. On equivalent reformulations f-or absolute value equations[J]. Comput Optim Appl, 2009, 44: 363-372.

共引文献32

同被引文献17

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部