摘要
The paper deals with state estimation problem of nonlinear non-Gaussian discrete dynamic systems for improvement of accuracy and consistency. An efficient new algorithm called the adaptive Gaussian-sum square-root cubature Kalman filter(AGSSCKF) with a split-merge scheme is proposed. It is developed based on the squared-root extension of newly introduced cubature Kalman filter(SCKF) and is built within a Gaussian-sum framework. Based on the condition that the probability density functions of process noises and initial state are denoted by a Gaussian sum using optimization method, a bank of SCKF are used as the sub-filters to estimate state of system with the corresponding weights respectively, which is adaptively updated. The new algorithm consists of an adaptive splitting and merging procedure according to a proposed split-decision model based on the nonlinearity degree of measurement. The results of two simulation scenarios(one-dimensional state estimation and bearings-only tracking) show that the proposed filter demonstrates comparable performance to the particle filter with significantly reduced computational cost.
The paper deals with state estimation problem of nonlinear non-Gaussian discrete dynamic systems for improvement of accuracy and consistency. An efficient new algorithm called the adaptive Gaussian-sum square-root cubature Kalman filter(AGSSCKF) with a split-merge scheme is proposed. It is developed based on the squared-root extension of newly introduced cubature Kalman filter(SCKF) and is built within a Gaussian-sum framework. Based on the condition that the probability density functions of process noises and initial state are denoted by a Gaussian sum using optimization method, a bank of SCKF are used as the sub-filters to estimate state of system with the corresponding weights respectively, which is adaptively updated. The new algorithm consists of an adaptive splitting and merging procedure according to a proposed split-decision model based on the nonlinearity degree of measurement. The results of two simulation scenarios(one-dimensional state estimation and bearings-only tracking) show that the proposed filter demonstrates comparable performance to the particle filter with significantly reduced computational cost.
基金
supported by the National Natural Science Foundation of China(No. 61032001)
Shandong Provincial Natural Science Foundation of China (No. ZR2012FQ004)