期刊文献+

基于一种新的正交优化的群智能优化算法 被引量:1

Orthogonal optimization based swarm intelligent optimization algorithm
下载PDF
导出
摘要 目前的智能优化算法易陷入本地最优平衡态,并且进化后期的效率低下。为了克服这些缺陷,提出了一种基于正交优化的群智能优化算法。该算法突破了以往正交设计方法仅能用在粒子群初始化和进化前优化搜索过程的局限,基于方差分析和方差比例分析,证实了正交设计方法进一步的搜索方向和范围。使用正交设计的特征在一次阵列计算中寻找包含最优值的间隔,算法可以在优化搜索过程中循环进行方差比例分析。对六峰值驼背函数的仿真分析结果说明,正交智能优化算法相比目前的智能优化算法,计算量更低,搜索时间更短,运行速度更快,且优化搜索过程的精度更高。 Existing intelligent optimization algorithms are easy to fall into local optimal equilibrium states and have low effi- ciency at evolutionary late stage. In order to overcome these shortcomings, this paper proposed a swarm intelligence optimiza- tioin algorithm based on orthogonal optimization. Based on the variance analysis and variance ratio analysis, the algorithm con- firmed the further searching direction and searching range of the orthogonal design method which was previously limited to be used in the swarm initialization and optimization searching before evolution. Making use of the characteristics of orthogonal de- sign to find the interval containing the best solution in one arrayed calculation, the algorithm could circularly make variance ra- tio analysis in the optimization searching process. The simulation analysis of six-hump camel back function shows that com- pared to existing intelligent optimization, the proposed algorithm has lower calculation amount, shorter searching time, more rapid running speed, and higher accuracy of optimization searching process.
作者 韩义波 韩璞
出处 《计算机应用研究》 CSCD 北大核心 2015年第1期71-74,共4页 Application Research of Computers
基金 河南省科技攻关项目(112102210500)
关键词 群智能 基于种群的智能优化 蚁群算法 正交设计 方差比例 swarm intelligent population-based intelligent optimization ant colony optimization orthogonal design vafiance ratio
  • 相关文献

参考文献12

  • 1王龙生,顾浩,余云智,韩瑜.微分进化粒子滤波[J].计算机工程与应用,2012,48(1):170-172. 被引量:1
  • 2于海涛,贾美娟,王慧强,邵国强.基于人工鱼群的优化K-means聚类算法[J].计算机科学,2012,39(12):60-64. 被引量:23
  • 3SHIM V A,TAN K C ,TAN K K. A hybrid adaptive evolutionary" algo- rithm in the domination-based and decomposition-based frameworks of multi-objective optimization [ C ]//Proc of IEEE Congress on Evolu- tionary Computation. 2012 : 1-8.
  • 4REZAEI Y,MOBASHERI M R, SCHAEPMAN M E. Endmember ex- traction using a combination of orthogonal projection and genetic algo- rithm [ J ]. IEEE Geoscience and Remote Sensing Letters, 2012,9(2) : 161-165.
  • 5CHEN Zhi-qiang, YIN Yuan-fu. A new crossover operator for real-co- ded genetic algorithm with selective breeding based on difference be- tween individuals [ C ]//Proc of the 8th International Conference on Natural Computation. 2012 : 644-648.
  • 6DUC D D,LE T T,VU T N,et al. GA_SVM: a genetic algorithm for improving gene regulatory activity prediction [ C ]//Proc of IEEE In- ternational Conference on Research, Innovation and Vision for the Fu- ture. 2012 : 1- 4.
  • 7ALAM A M T,AHMED S, Md NOMAN A S,et al. A dual mutation strategy embedded evolutionary programming for continuous optimiza- tion [ C ]//Proc of World Congress on Nature and Biologically In- spired Computing. 2013 : 84-91.
  • 8陈红,刘光远,赖祥伟.相关性分析和最大最小蚁群算法用于脉搏信号的情感识别[J].计算机科学,2012,39(4):250-253. 被引量:6
  • 9曲大鹏,王兴伟,黄敏.移动对等网络中的感知蚁群路由算法[J].计算机学报,2013,36(7):1456-1464. 被引量:15
  • 10YANG Ling-xiao, SONG Yu-kun, HAO Yu-meng. Design of FIR filter based on adaptive gridding partition ant colony optimization [ C ]// Proc of the 3rd International Conference on Digital Manufacturing and Automation. 2012: 323-326.

二级参考文献58

  • 1PANLi,ZHENGHong,ZHANGZuxun,ZHANGJianqing.Genetic Feature Selection for Texture Classification[J].Geo-Spatial Information Science,2004,7(3):162-166. 被引量:6
  • 2冯琦,周德云.基于微分进化算法的时间最优路径规划[J].计算机工程与应用,2005,41(12):74-75. 被引量:31
  • 3毛勇,周晓波,夏铮,尹征,孙优贤.特征选择算法研究综述[J].模式识别与人工智能,2007,20(2):211-218. 被引量:95
  • 4吴宝成.粒子滤波重采样算法研究及其应用[M].哈尔滨:哈尔滨工业大学出版社,2006:55.
  • 5Doucet A,de Freitas J, Gordon N.Sequential Monte Carlo methods in practice[M].New York:Springer,2001.
  • 6Doueet A,Godsill S,Andrieu C.On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statist Computer, 2000, 10:197-208.
  • 7Store R, Price K.Differential evolution a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997,11:341-359.
  • 8Store R.System design by constraint adaptation and differential evolution[J].IEEE Transactions on Evolutionary Computation, 1999,3(1):22-34.
  • 9Gordon N, Salmond D J, Smith A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEEE Proceedings F Radar and Signal Processing, 1993,140(2) : 107-113.
  • 10Liu J S, Chen R, Logvinenko T.A theoretical framework for sequential importance sampling and resampling[M]//Sequential Monte Carlo in Practice.New York: Springer-Verlag, 2001 : 225-246.

共引文献43

同被引文献10

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部