期刊文献+

分数阶三维块匹配去噪算法 被引量:6

Fractional block matching three-dimensional filter
下载PDF
导出
摘要 提出了一种分数阶三维块匹配去噪算法,以克服分数阶积分去噪中低频轮廓保留不精确的缺点和三维块匹配算法中高频纹理细节成分保留较差的缺点。描述了分数阶积分去噪方法应用在数字图像处理中的数学理论原理;构造了分数阶积分去噪模板,并具体分析了分数阶阶次选择对去噪结果的影响;从主观视觉评价和客观峰值信噪比(PSNR)度量两个标准对提出的去噪算法性能进行了分析。从去噪实验的结果来看,提出的分数阶三维块匹配算法在去噪图像高频细节纹理的保留上与诸如小波去噪、非局部均值等算法相比取得了更佳的结果。通过对本算法的数值实现,以及与多数流行去噪算法结果进行数值分析,证明了分数阶积分三维块匹配理论的正确性和合理性,得出了本算法效果更佳的结论。 To overcome the imprecise shortcomings of keeping low-level outline signal in denoise method based on fractional calculus filtering and losing high-level detail signal in BM3D (block-matching 3D) filtering, this paper proposed a fractional block-matching 3D filtering method. It discussed the basic mathmatic theory of fractional calctrlus to apply it to the image pro- cessing, constructured the fractional integral denoising templates, and discussed the impact of fractional order selection for de- noising results. And it used two standard methods to evaluate result: subjective visual perception and objective peak signal to noise ratio (PSNR). The experiment results show that this method gets better results in reservations high-level details com- pared with wavelet filtering and nonlocal mean filtering. Through numerical realizing the method and analysing it with some ad- vanced denoise methods today, it proves the correctness and reasonability of the theory and it gets the conclution that this method is better.
出处 《计算机应用研究》 CSCD 北大核心 2015年第1期287-290,共4页 Application Research of Computers
关键词 图像去噪 分数阶微积分 三维块匹配 联合去噪 数字图像处理 image denoising fractional calculus BM3D joint denoising digital image processing
  • 相关文献

参考文献21

  • 1MILLER K S, ROSS B. An introduction to the fractional calculus and fractional differential equations [ M ]. New York : Wiley, 1993.
  • 2蒲亦非,王卫星.数字图像的分数阶微分掩模及其数值运算规则[J].自动化学报,2007,33(11):1128-1135. 被引量:70
  • 3PU YiFei,WANG WeiXing,ZHOU JiLiu,WANG YiYang,JIA HuaDing.Fractional differential approach to detecting textural features of digital image and its fractional differential filter implementation[J].Science in China(Series F),2008,51(9):1319-1339. 被引量:50
  • 4PU Yi-fei, ZHOU Ji-fiu, YUAN Xiao. Fractional differential mask : a fractional differential-based approach for multiscale texture enhance- ment[J]. IEEE Trans on Image Processing, 2010,19 ( 2 ) :491- 511.
  • 5PU Yi-fei, ZHOU Ji-liu, SIARRY P, et al. G. Fractional partial dif- ferential equation: fractional total variation and fractional steepest de- scent approach-based multiscale denoising model for texture image [ J ]. Abstract and Applied Analysis, 2013,2013:19.
  • 6SRIVASTAVA H M, SAXENA R K. Operators of fractional integra- tion and their applications [ J ]. Applied Mathematics and Compu- tation ,2001,118 ( 1 ) : 1-52.
  • 7McBRIDE A C, McBRIDE A C. Fractional calculus and integral transforms of generalized functions [ M ]. London : Pitman, 1979.
  • 8LOVERRO A. Fractional calculus: history, definitions and applica- tions for the engineer[ R ]. Hotre Dame : Department of Aerospace and Mechanical Engineering, University of Notre Dame ,2004.
  • 9DABOV K, FOI A, KATKOVNIK V, et al. Image denoising with block-matching and 3D filtering [ C ]//Proc of SPIE Electronic Ima- ging. 2006.
  • 10DABOV K, FOI A, KATKOVNIK V, et al. Joint image sharpening and denoising by 3D transform-domain collaborative filtering [ C ]// Proc of International TICSP Workshop on Spectral Meth Muhirate Sig- nal Process. 2007.

二级参考文献48

共引文献175

同被引文献64

  • 1朱宁,吴静,王忠谦.图像放大的偏微分方程方法[J].计算机辅助设计与图形学学报,2005,17(9):1941-1945. 被引量:49
  • 2蒲亦非,王卫星.数字图像的分数阶微分掩模及其数值运算规则[J].自动化学报,2007,33(11):1128-1135. 被引量:70
  • 3Land E H, McCann J J. Lightness and retinex theory[ J]. Journal of the Optical Society of America, 1971,61 ( 1 ) : 1-11.
  • 4yon Kries J. Chromatic adaptation [ M ]//Sources of Color Science. 1970 : 109-119.
  • 5van de Weijer J, Gevers T, Gijsenij A. Edge-based color constancy[ J]. IEEE Transactions on Image Processing, 2007,16 (9) .2207-2214.
  • 6Land E H. The retinex theory of color vision [ J ]. Scientific American, 1977,237 (6) : 108-128.
  • 7Buchsbaum G. A spatial processor model for object colour perception[ J]. Journal of the Franklin Institute, 1980,310 (1) :1-26.
  • 8Gijsenij A, Gevers T, van de Weijer J. Generalized gamut mapping using image derivative structures for color constan- cy[ J ]. International Journal of Computer Vision, 2010,86 (2) :127-139.
  • 9Ahonen T, Matas J, He Chu, et al. Rotation invariant im- age description with local binary pattern histogram Fourier features[ C]// Proceedings of the 16th Scandinavian Con- ference on Image Analysis. 2009:61-70.
  • 10Guo Zhenhua, Zhang Lei, Zhang David. Rotation invariant texture classification using LBP variance (LBVP) with global matching [ J ]. Pattern Recognition, 2010,43 (3) : 706-719.

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部