期刊文献+

融合全局和局部信息的水平集乳腺MR图像分割 被引量:8

Level set method combined global and local information and its application to breast MRI
下载PDF
导出
摘要 针对乳腺核磁共振成像的灰度不均匀现象,提出一种融合全局和局部信息的水平集图像分割方法(global and local combined C_V,GLCCV)。该方法将图像的局部信息融入基于全局信息的Chan-Vese(C_V)水平集方法;根据局部灰度拟合均值占全局灰度均值的比例,构造自适应平衡指示函数调节全局和局部效应之间的均衡;加入惩罚项以避免重新初始化。对比实验表明,该水平集分割模型能够有效分割多种灰度不均匀场景下的乳腺MR图像,在抗噪和精确性方面优于融合前的分割方法。 To effectively perform breast magnetic resonance imaging(MRI) segmentation in the case of intensity inhomogenei- ty, the paper proposed a novel level set method combined global and local information(GLCCV). Local information of image was incorporated into the Chan-Vese(C_V) model, which was based on global information. According to the proportion of the local intensity fitting term accounts for the global term, this paper presented a self-adaptive indicator function to balance the global and local effect, added penalty term to avoid re-initialization. Contrast experiments show that the proposed method is ef- ficient to segment breast MRI in variety case of intensity inhomogeneity scenes, and is better than conventional methods in noise resistance and accuracy.
出处 《计算机应用研究》 CSCD 北大核心 2015年第1期307-311,共5页 Application Research of Computers
基金 陕西省科学技术研究发展计划项目(2012K06-36) 陕西师范大学中央高校基本科研业务费资助项目(GK201102006)
关键词 乳腺MRI 融合全局和局部信息 水平集 灰度不均匀 自适应指示函数 breast MRI combined global and local information level set method intensity inhomogeneity self-adaptive indicator function
  • 相关文献

参考文献13

  • 1崔军胜.乳腺磁共振检查技术的应用与探讨[J].中国临床研究,2013,26(1):67-67. 被引量:1
  • 2LI Chun-ming, KAO C Y, GORE J C, et al. Implicit active contours driven by local binary fitting energy[ C]//Proc of IEEE Conference on CYPR. 2007 : 1 -7.
  • 3WELLS W M, GRIMSON W E L, KIKINIS R, et al. Adaptive seg- mentation of MRI data[ J]. IEEE Yrans on Medical Imaging, 1996, 35(4) :429-442.
  • 4CUI Wen-chao, WANG Yi, FAN Yang-yu, et al. Localized FCM clustering with spatial information for medical image segmentation and bias field estimation[ J]. International Journal of Biomedical Ima- ging ,2013,6 : 1 - 8.
  • 5HE Lei, LONG L R, ANTANI S, et al. Local and global Gausslan mixture models for hematoxylin and eosin stained histology image seg- mentation[ C ]//Proc of International Conference on Hybrid Intelligent Systems. 2010:223-228.
  • 6AHMED M N, FARAG A A. Two-stage neural network for volume segmentation of medical images [ J ]. Pattern Recognition, 1997,18 (11-13) :1143-1151.
  • 7KASS M, WITKIN A, TERZOPOULOS D. Snakes: active contour models [ J]. International Journal of Computer Vision, 1988, 1 (4) :321-331.
  • 8BALL J E, BRUCE L M. Level set-based core segmentation of mam- mographie masses facilitating three stages ( cure, periphery, spieula- tion) analysis[ C]//Proc of the 29th Annual International Conference of IEEE EMBS. 2007:819-824.
  • 9CHAN F T, VESE L. Active contours without edges [ J ]. IEEE Trans on Image Processing,2001,10(2) :266-277.
  • 10LI Chun-ming, KAO C Y, GORE J C, et al. Minimization of region- scalable fitting energy for image segmentation [ J]. IEEE Yrans on Image Processing ,2008,17 (10) : 1940-1949.

二级参考文献4

同被引文献62

  • 1刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:357
  • 2Kapur J N,Sahoo P K,Wong A K C.A new method for gray-level picture thresholding using the entropy of the histogram[J].Computer Vision,Graphics,and Image Processing,1985,29(3):273-285.
  • 3Otsu N.A threshold selection method from gray level histogram[J].Automatica,1975,11(285-296):23-27.
  • 4Sezgin M.Survey over image thresholding techniquesand quantitative performance evaluation[J].Journal of Electronic Imaging,2004,13(1):146-168.
  • 5Sarkar S,Das S.Multilevel image thresholding based on 2D histogram and maximum Tsallis entropy-a differential evolution approach[J].IEEE Trans on Image Processing,2013,22(12):4788-4797.
  • 6Qiao Yu,Hu Qingmao,Qian Guoyu,et al.Thresholding based on variance and intensity contrast[J].Pattern Recognition,2007,40(2):596-608.
  • 7Yasnoff W A,Mui J K,Bacus J W.Error measures Y for scene segmentation[J].Pattern Recognition,1977,9(4):217-231.
  • 8Kampke T,Kober R.Nonparametric optimal binarization[C]// Proc of the 14th International Conference on Pattern Recognition.[S.l.]:IEEE Press,1998:27-29.
  • 9Dubuisson M P,Jain A K.A modified Hausdorff distance for object matching[C]// Proc of the 12th IAPR International Conference on Image Processing.[S.l.]:IEEE Press,1994:566-568.
  • 10王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].计算机研究与发展,2008,45(1):1—15.

引证文献8

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部