期刊文献+

MgH_2+20%(w)MgTiO_3复合材料的吸/放氢性能(英文) 被引量:1

Hydriding/Dehydriding Properties of an MgH_2+20%(w) MgTiO_3 Composite
下载PDF
导出
摘要 为了降低MgH2的吸放氢温度,提高其吸放氢动力学性能,本文通过球磨方法制备了MgH2+20%(w)MgTiO3复合储氢材料,并研究了其储氢性能.X射线衍射(XRD)结果表明,MgTiO3在与MgH2球磨过程中生成Mg2TiO4和TiO2,并且Mg2TiO4和TiO2在体系的吸放氢过程中保持稳定,能够对MgH2的吸放氢过程产生催化作用.程序升温脱附和吸/放氢动力学测试结果表明,添加MgTiO3后MgH2的初始放氢温度从389°C降至249°C.150°C下的吸氢量从0.977%(w)提高到2.902%(w),350°C下的放氢量从2.319%(w)提高到3.653%(w).同时,MgH2放氢反应的活化能从116kJ·mol-1降至95.7kJ·mol-1.与MgH2相比,MgH2+20%(w)MgTiO3复合材料的热力学与动力学性能均有显著提高,这主要是由于球磨和放氢过程中原位生成的TiO2和Mg2TiO4具有良好的催化活性. With the aim of decreasing the dehydriding temperature and improving the hydriding/dehydriding kinetic properties of MgH2, we prepared MgH2+20%(w) MgTiO3 composite via bal-mil ing, and investigated the hydrogen storage properties of the composite. X-ray diffraction (XRD) results showed that the MgTiO3 decomposed into Mg2TiO4 and TiO2 during the bal-mil ing. These two resulting compounds remained stable during the hydriding/dehydriding processes, working as catalysts for the hydriding/dehydriding. Temperature-programmed-desorption (TPD) and hydriding/dehydriding kinetics tests showed that doping MgH2 with MgTiO3 lowered the onset dehydrogenation temperature of MgH2 from 389 to 249 °C, as wel as increasing the hydrogen absorption amount from 0.977%(w) to 2.902%(w) at 150 °C, and increasing the desorption amount from 2.319%(w) to 3.653%(w) at 350 °C. The MgTiO3 additive decreased the dehydriding activation energy of MgH2 from 116 to 95.7 kJ·mol-1. The thermodynamic and kinetic performance of the MgH2+20%(w) MgTiO3 composite was significantly improved compared with pristine MgH2, which was attributed to the high catalytic activity of the (in-situ formed) TiO2 and Mg2TiO4 during the bal-mil ing and dehydriding processes.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2014年第12期2323-2327,共5页 Acta Physico-Chimica Sinica
基金 The project was supported by the National Natural Science Foundation of China(50971112,51001043) Scientific Research Projects in Colleges and Universities in Hebei Province,China(ZD2014004)~~
关键词 储氢性能 MgH2 MGTIO3 催化活性 活化能 Hydrogen storage property MgH2 MgTiO3 Catalytic activity Activation energy
  • 相关文献

参考文献25

  • 1蓝志强,肖潇,苏鑫,陈捷狮,郭进.Al 掺杂对Mg2Ni 合金的电子结构及贮氢性能的影响[J].物理化学学报,2012,28(8):1877-1884. 被引量:7
  • 2Wang, H.; Zhang, J.; Liu, J. W.; Ouyang, L. Z.; Zhu, M. Int. J. Hydrog. Energy 2013, 38 (25), 10932. doi: 10.1016/j. ijhydene.2013.02.075.
  • 3Floriano, R.; Leiva, D. R.; Deledda, S.; Hauback, B. C.; Botta, W. J. Int. J. Hydrog. Energy 2014, 39 (9), 4404.
  • 4Shimada, M.; Higuchi, E.; Inoue, H. J. Alloy. Compd. 2013, 580, S153.
  • 5Kurko, S.; Milanovio, I.; Novakovi6, J. G.; Ivanovi6, N.; Novakovi6, N. Int. J. Hydrog. Energy 2014, 39 (2), 862.
  • 6Song, W. J.; Li, J. S.; Zhang, T. B.; Hou, X. J.; Kou, H. C.; Xue, X.; Hu, R. Trans. Nonferrous Met. Soc. China 2013, 23 (12), 3677. doi: 10.1016/S1003-6326(13)62916-7.
  • 7Mamula, B. E; Novakovi6, J. G.; Radisavljevi6, I.; Ivanovi6, N. Novakovi6, N. Int. J. Hydrog. Energy 2014, 39 (11), 5874. doi: 10.1016/j.ijhydene.2014.01.172.
  • 8杜晓明,李武会,黄勇,吴尔冬.Mg-Ti-H体系晶体结构与相稳定性的第一性原理计算[J].物理化学学报,2011,27(12):2793-2798. 被引量:3
  • 9Jongh, P. E.; Wagemans, R. W.; Eggenhuisen, T. M.; Dauvillier, B. S.; Radstake, P. B.; Meeldijk, J. D.; Geus, J. W.; Jong, K. P. Chem. Mater. 2007, 19, 6052. doi: 10.1021/cm702205v.
  • 10李金华,刘宝忠,韩树民,扈琳,朱惜林,王明智.LaMg_(8.40)Ni_(2.34)合金的相结构和储氢性能(英文)[J].物理化学学报,2011,27(2):403-407. 被引量:4

二级参考文献51

  • 1周惦武,彭平,刘金水.MgH_2-Ti体系解氢能力的第一原理计算[J].中国有色金属学报,2005,15(9):1403-1410. 被引量:6
  • 2Schlapbach, L.; Zuettel, A. Nature 2001, 414, 353.
  • 3Zhu, M.; Peng, C. H.; Ouyang, L. Z.; Tong, Y. Q. J. Alloy. Compd. 2006, 426, 316.
  • 4Chio, M. D.; Ziggiotti, A.; Baricco, M. Intermetallics 2008, 16, 102.
  • 5Song, X. P.; Zhang, P. L.; Pei, P.; Liu, J.; Li, R. C.; Chen, G. L. Int. J. Hydrog. Energy 2010, 35, 8080.
  • 6Palade, P.; Sartori, S.; Maddalena, A.; Principi, G.; Lo Russo,S.; Lazarescu, M.; Schinteie, G.; Kuncser, V.; Filoti, G. J. Alloy. Compd. 2006, 415, 170.
  • 7Liu, Z. Y.; Wang, E.; Lei, Z. L. J. Alloy. Compd. 2007, 431,212.
  • 8Muthukumara, P.; Maiya, M. P.; Murthy, S. S.; Vijay, R.; Sundaresan, R. J. Alloy. Compd. 2008, 452, 456.
  • 9Sakinttmaa, B.; Lamari-Darkimb, F.; Hirscherc, M. Int. J. Hydrog. Energy 2007, 32, 1121.
  • 10Friedlmeie, R. G.; Arakawa, M.; Hirai, T.; Akiba, E. J. Alloy. Compd. 1999, 292, 101.

共引文献10

同被引文献19

  • 1NURUL N, ITAM S, NURUL S M, MOHAMMAD I. The effect of Na3FeF6 catalyst on the hydrogen storage properties of MgH2[J]. Dalton Transactions, 2016, 3(5): 1077-1082.
  • 2GRZECH A, LAFONT U, MAGUS1N P C M M. Microscopic Study of TiF3 as hydrogen storage catalyst for MgH2[J]. Journal of Physical Chemistry C, 2012, 116(49): 26027-26035.
  • 3SONG Y, GUO Z X, YANG R. Influence of selected alloying elements on the stability of magnesium dihydride for hydrogen storage applications MgHz[J]. Physical Review Letters B, 2014, 12(3): 132106-132109.
  • 4ISMAIL M. Effect of LaC13 addition on the hydrogen storage properties of MgH2[J]. Energy, 2015, 79(1): 177-182.
  • 5. J1N S A, SHIM J H, CHO Y W, YI K W. Dehydrogenation and hydrogenation characteristics of MgH2 with transition metal fluorides[J]. Journal of Power Sources, 2007, 172(1/2): 859-862.
  • 6ABDELLATIEF M, CAMPOSTRINI R, LEONI M, SCARDI P. Effects of SnO2 on hydrogen desorption of MgH2[J]. International Journal of Hydrogen Energy, 2013, 38(3): 4664-4669.
  • 7HAN L Y, XIAO X Z, FAN X L, LI Y. Enhanced dehydrogenation performances and mechanism of LiBH4/Mg 17A1]2-hydride composite[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(1): 157-164.
  • 8DAI J H, SONG Y, YAN R. Effects of substituting La with M (MSm,Nd,Pr) on electrochemical hydrogen storage characteristics of A2BT-type electrode alloys[J]. Transactions of Nonferrous Metals Society of China, 2014, 12(24): 4012-4022.
  • 9BORA P L, AHMAD R, S1NGH A. Remarkable enhancement in hydrogen storage on free-standing Ti3B and BC3 supported Ti3 clusters[J]. International Journal of Hydrogen Energy, 2014, 40(2): 1054-1061.
  • 10JIA Y, SUN C, CHENG L, WAHAB M A, CUI J, JIN Z, MIN Z, YAO X D. Destabilization of Mg-H bonding through nano-interfacial confinement by unsaturated carbon for hydrogen desorption from MgH2[J]. Physical Chemistry Chemical Physics, 2013, 15(16): 5814-5820.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部