期刊文献+

基于特征子图的异构信息网络节点相似性度量 被引量:4

Heterogeneous Information Networks Node Similarity Measurement Based on Feature Sub-Graph
下载PDF
导出
摘要 为解决异构信息网络相似性度量的问题,提出了基于节点特征子图的节点相似性度量算法,通过节点特征子图的最大公共子图与最小公共超图之间的差异性,进行节点间的相似性度量。该算法以图理论为基础,根据连边的不同类型设定不同权值,在考虑节点信息相似的同时,加入节点在网络中的结构信息,最大程度地利用了异构信息网络所富含的信息。实验结果表明,提出的算法具有较好的性能和有效性。 To solve the problem in measuring the similarity of heterogeneous information networks, a similarity measuring algorithm was proposed. It calculates the difference between the maximum common sub-graph and minimum common hyper-graph, based on feature sub-graph of the current node. The algorithm takes graph theory as its foundation, set different weight to different kinds of edges, considers nodes information as well as graph to topological information, and makes full use of the information in heterogeneous network. The result shows that the proposed algorithm has wonderful effectiveness and efficiency.
出处 《电信科学》 北大核心 2014年第11期66-72,共7页 Telecommunications Science
基金 国家自然科学基金资助项目(No.61103043 No.61173099 No.U1233118) 国家"十二五"科技支撑计划基金资助项目(No.2012BAG04B0) 武汉大学软件工程国家重点实验室开放基金资助项目(No.SKLSE2012-09-26)
关键词 异构信息网络 图相似 相似性度量 特征子图 heterogeneous information network, graph similarity, similarity measurement, feature sub-graph
  • 相关文献

参考文献14

  • 1Han J W,Yan X F,Yu P S.Scalable OLAP and mining of information networks.Proceedings of the 12th International Conference on Extending Database Technology,Saint Petersburg,Russia,2009.
  • 2Chen M S,Han J W,Yu P S.Data mining:an overview from a database perspective.IEEE Transactions on Knowledge and Data Engineering,1996,8(6):866-883.
  • 3Chen C,Yan X F,Zhu F D,et al.Graph OLAP:towards online analytical processing on graphs.Proceedings of the 8th IEEE International Conference on Data Mining,Pisa,Italy,2008:103-112.
  • 4李川,赵磊,唐常杰,陈瑜,李靓,赵小明,刘小玲.Graph OLAPing的建模、设计与实现[J].软件学报,2011,22(2):258-268. 被引量:13
  • 5S un Y Z,Han J W,Yan X F,et al.Pathsim:meta path-based top-k similarity search in heterogeneous information networks.Proceedings of the VLDB Conference,Seattle,Washington,USA,2011.
  • 6Glen J,Widom J.Scaling personalized web search.Proceedings of the 12th International Conference on World Wide Web,Budapest,Hungary,2003:1-35.
  • 7Jeh G,Widom J.Sim Rank:a measure of structural-context similarity.Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,Edmonton,Alberta,Canada,2002:1-11.
  • 8Balmin A,Hristidis V,Papakonstantinou Y.Objectrank:authority-based keyword search in databases.Proceedings of the30 th VLDB Conference,Toronto,Canada,2004:564-575.
  • 9Fortunato S.Community detection in graphs.Physics Reports,2010,486(3-5):75-174.
  • 10Biggs N,Lloyd E K,Wilson R J.Graph Theory 1736-1936.New York:Oxford University Press,1976.

二级参考文献1

共引文献12

同被引文献25

  • 1Lian X. Chen L. Subspace similarity search under Lp-Norm. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(2):365-382.
  • 2Hinneburg A, Aggarwal C, Keim D A. What is the nearest neighbor in high dimensional spaces. Proceedings of the 26th VLDB Conference, Cairo, Egypt, 2000:506-515.
  • 3Shi Y, Graham B. Similarity search problem research on multi-dimensional data sets. Proceedings of Tenth International Conference on Information Technology: New Generations (ITNG), Washington DC, USA ,2013:573-577.
  • 4Watanabe S, Sawada H, Minami Y, et al. Fast similarity search on a large speech data set with neighborhood graph indexing. Proceedings of 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Dallas, USA, 2010: 5358.5361.
  • 5Marios,Yannis. R-trees: a dynamic index structure for spatial searching. Boston, MA, USA ,1984:993-1002.
  • 6Kriegel H P, Kroger P, Schubert M, et ol. Efficient query processing in arbitrary subspaees using vector approximations. Proceedings of the 18th International Conference on Scientific and Statistical Database Management, Washington DC, USA, 2006:184 . 190.
  • 7Zhang D X, Agrawal D, Chen G, et al. HashFile : an efficient index structure for multimedia data. Proceedings of the IEEE 27th International Conference on Data Engineering (ICDE), Washington DC, USA, 2011:1103.1114.
  • 8Datar M, Immorlica N, Indyk P, et al. Locality-sensitive hashing scheme based on p-stable distributions. Proceedings of the 20th Annum Symposium on Computational Geometry, New York, USA, 2004:253-262.
  • 9Lv Q, Josephson W, Wang Z, et al. Multi-probe LSH : efficient indexing for high-dimensional similarity search. Proceedings of the 33rd International Conference on Very Large Data Bases, Vienna, Austria, 2007:950.961.
  • 10Zhang Z J, Ooi B C, Parthasarathy S, et ol. Similarity search on bregman divergence: towards non-metrlc indexing. Proceedings of the VLDB Endowment, Springer, Geimany,2009:13.24.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部