期刊文献+

面向社交网络信息源定位的观察点部署方法 被引量:7

Observer Deployment Method for Locating the Information Source in Social Network
下载PDF
导出
摘要 准确地定位社交网络上的信息扩散源点,对于网络信息扩散控制具有重要的现实意义.现有的一种可行方法是通过在网络中观察点搜集的过程信息对扩散源进行定位,定位准确率与观察点的选择紧密相关.针对网络中的信息扩散源定位问题,提出了一种网络观察点优化部署方法.考虑单信息源的信息扩散过程,首先分析了特定信息源定位准确率与观察点部署位置之间的关系,以此为基础,发现了与任意信息源定位准确率相关的关键因素.提出基于r覆盖率的观察点部署策略,以观察点集合的r覆盖率作为目标函数,实现了r覆盖率优先观察点选取算法.在模型网络与实际网络上进行了实验,验证了该方法的有效性.提出的观察点部署策略对于网络谣言、计算机病毒的控制具有重要意义. Locating information source accurately is important for controlling its diffusion on the social network. In previous studies, a feasible way is locating the source using process information collected by the observers. Thus, the accuracy rate is closely related to the observer positions. In this paper, an optimal deployment method for observer positions is proposed. Considering the information diffusion process for single source, it firstly analyzes the relationship between the accuracy rate for locating a specified source and the positions of observers. Based on the relationship, it finds a key factor which is related to the accuracy rate of locating any source. It then suggests a method to deploy the observer positions based on r-coverage rate. It chooses the r-coverage rate of the observers as the objective function to implement the r-coverage rate first observer selection algorithm. The proposed method is tested on model and real networks respectively. Results show that the proposed method is effective. The observer deployment method is significant in controlling internet rumors and computer virus.
出处 《软件学报》 EI CSCD 北大核心 2014年第12期2837-2851,共15页 Journal of Software
基金 国家自然科学基金(60903009 71272216 61073062 61100090) 中央高校基本科研业务费(120404011 120804001 120604003) 黑龙江省普通高等学校青年学术骨干支持计划(1253G017)
关键词 社交网络 信息扩散 信息源定位 观察点部署 r覆盖率 social network information diffusion information source location observer deployment r coverage rate
  • 相关文献

参考文献37

  • 1Zinoviev D, Duong V, Zhang HG. A game theoretical approach to modeling information dissemination in social networks. In: Proc. of the IMCCIC. 2010. 407-412.
  • 2Zinoviev D, Duong V. A game theoretical approach to broadcast information diffusion in social networks. In: Proc. of the 44th Annual Simulation Symp. Society for Computer Simulation Int'l, 2011.47-52.
  • 3Easley D, Kleinberg J. Networks, crowds, and markets: Reasoning about a highly connected world. Cambridge University Press, 2010,6(1):6.1. [doi: 10.1017/S0266466609990685].
  • 4Pastor-Satorras R, Vespignani A. Epidemic dynamics and endemic states in complex networks. Physical Review E, 2001,63(6): 19. [doi: 10.1103/PhysRevE.63.066117].
  • 5Pastor-Satorras R, Vespignani A. Epidemic dynamics in finite size scale-free networks. Physical Review E, 2002,65(3):14. [doi: 10.1103/PhysRevE.65.035108].
  • 6Jagatic T, Johnson NA, Jakobsson M, Menczer F. Social phishing. Communications of the ACM, 2007,50(10):94-100. [doi: 10.1145/1290958.1290968].
  • 7Chen W, Wang C, Wang YJ. Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proc. of the 16th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. ACM Press, 2010. 1029-1038. [doi: 10.1145/ 1835804.1835934].
  • 8Chen W, Wang YJ, Yang SY. Efficient influence maximization in social networks. In: Proc. of the 15th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. ACM Press, 2009. 199-208. Idol: 10.1145/1557019.1557047].
  • 9Kwak H, Lee C, Park H, Moon S. What is Twitter, a social network or a news media. In: Proc. of the 19th Int'l Conf. on World Wide Web. ACM Press, 2010. 591-600. [doi: 10.1145/1772690.1772751].
  • 10Granovetter M. Threshold models of collective behavior. American Journal of Sociology, 1978,83(6): 1420-1443.

同被引文献58

  • 1Dong W, Zhang W, Tan C W. Rooting out the rumor culprit from suspects [ C ]// IEEE International Symposium on Information Theory. Istanbul : IEEE ,2013:2671 - 2675.
  • 2Budak C, Agrawal D, E1-Abbadi A. Limiting the spread of misinformation in social networks [ C ]//Proceedings of the 20th International Conference on World Wide Web. Hyderabad: ACM,2011:665 - 674.
  • 3Shah D,Zaman T. Detecting sources of computer viruses in networks : theory and experiment [ C ]//ACM SIGMETRICS Performance Evaluation Review. New York: ACM, 2010: 203 -214.
  • 4Lokhov A Y,Mezard M, Ohta H. Inferring the origin of an epidemic with dynamic message-passing algorithm [ J ]. Physical Review E,2014 ,90( 1 ) :012801.
  • 5Prakash B A, Vreeken J, Faloutsos C. Spotting culprits in epidemics:how many and which ones? [ C ]// IEEE 12th International Conference on Data Mining. Brussels: IEEE, 2012:11 -20.
  • 6Zhu K, Ying L. Information source detection in the SIR model: a sample path based approach [ J ]. IEEE/ACM Transactions on Networking,2014,11 (20) :1 - 14.
  • 7Pinto P C, Thiran P, Vetterli M. Locating the source of diffusion in large-scale networks [ J ]. Physical Review Letters, 2012,109 ( 6 ) : 068702.
  • 8Erd6s P, R6nyi A. On random graphs I [J ]. Publications Mathematician, 1959,6:290 - 297.
  • 9Barab6si A L, Albert R. Emergence of scaling in random networks [ J ]. Science, 1999,286 (5439) :509 - 512.
  • 10Lee H W. Global Risks Report. World Economic Forum 301211. 2013.

引证文献7

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部