期刊文献+

局部加权全变差下的盲去模糊 被引量:6

Blind Deblurring Based on Local Weighted Total Variation
下载PDF
导出
摘要 图像去模糊是图像处理和分析中的基本问题之一,其本身是一个不适定问题,通常需要使用正则化方法来提高求解过程的稳定性.为了解决去运动模糊问题,从图像的局部特性出发,提出一种基于局部加权全变差(LWTV)的正则化方法,并给出了一种基于交替迭代的有效解法.针对非盲去卷积问题,为了克服传统全变差(TV)正则化方法的不足,以图像局部的变化信息为权值,在加大对图像中平坦区域的惩罚力度的同时,减小对图像中边缘区域的惩罚力度;针对模糊核估计问题,首先利用相对全变差(RTV)方法提取图像的显著性结构,然后利用显著性结构进行初步模糊核估计,再采用LWTV模型进行临时清晰图像估计,通过以上3步交替迭代获得最终的模糊核.实验结果表明,该方法可以在去除模糊及噪声的同时,很好地保持图像边缘并抑制振铃效应. Image deblurring is one of basic problems in the field of image processing and analysis. Since it is an ill-posed problem, a regularization is required to improve the stability of the solving process. In this paper, we propose a regularization method for motion deblurring based on local weighted total variation (LWTV) in terms of the local features of the image, and its corresponding solution based on alternating minimization. In the part of non-blind deconvolution, to overcome the shortcomings of traditional total variation (TV) method, we adopt the local variation of image as weights to increase the punishment on the flat area and reduce the punishment on the edge area. In the part of kernel estimation, we first extract the significant structures using relative total variation (RTV) method, then estimate initial kernel with the significant structure, and finally estimate the temporary image using LWTV model. In this way, the kernel can be obtained by alternating above three steps iteratively. Experimental results show that the proposed deblurring method can not only remove the blur and noise, but also keep the sharp edge and suppress ringing artifacts.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第12期2173-2181,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61173102)
关键词 图像去模糊 局部加权 全变差 模糊核估计 盲去卷积 image deblurring locally weighted total variation blur kernel estimation blind deconvolution
  • 相关文献

参考文献21

  • 1Lucy L B.An iterative technique for the rectification of observed distributions[J].The Astronomical Journal,1974,79(6):745-754.
  • 2Yuan L,Sun J,Quan L,et al.Progressive inter-scale and intra-scale non-blind image deconvolution[J].ACM Transactions on Graphics,2008,27(3):Article No.74.
  • 3Fergus R,Singh B,Hertzmann A,et al.Removing camera shake from a single photograph[J].ACM Transactions on Graphics,2006,25(3):787-794.
  • 4Chan T F,Wong C K.Total variation blind deconvolution[J].IEEE Transactions on Image Processing,1998,7(3):370-375.
  • 5Zuo W M,Lin Z.A generalized accelerated proximal gradient approach for total-variation-based image restoration[J].IEEE Transactions on Image Processing,2011,20 (10):2748-2759.
  • 6Wang Y L,Yang J F,Yin W T,et al.A new alternating minimization algorithm for total variation image reconstruction[J].SIAM Journal on Imaging Sciences,2008,1(3):248-272.
  • 7Yang J F,Zhang Y,Yin W.An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise[J].SIAM Journal on Scientific Computing,2009,31 (4):2842-2865.
  • 8Levin A,Fergus R,Durand F,etal.Image and depth from a conventional camera with a coded aperture[J].ACM Transactions on Graphics,2007,26(3):Article No.70.
  • 9Krishnan D,Fergus R.Fast image deconvolution using hyper-Laplacian priors[C]//Proceedings of Neural Information Processing Systems.New York:Curran Associates Press,2009:1033-1041.
  • 10Joshi N,Szeliski R,Kriegman D.PSF estimation using sharp edge prediction[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2008:1-8.

二级参考文献26

  • 1Kundur D, Hatzinakos D. Blind image deconvolution [J]. IEEE Signal Processing Magazine, 1996, 13(3): 43-64.
  • 2Joshi N, Kang S B, Zitnick C L, et al. Image deblurring using inertial measurement sensors [J]. ACM Transactions on Graphics, 2010, 29(4): Article No. 30.
  • 3Yuan L, Sun J, Quan L, et al. Progressive inter-scale and intra-scale non-blind image deconvolution [J]. ACM Transactions on Graphics, 2008, 27(3): Article No. 74.
  • 4Levin A, Sandl P, Cho T S, et al. Motion-invariant photography [J]. ACM Transactions on Graphics, 2008, 27 (3) : Article No. 71.
  • 5Huang J, Mumford D. Statistics of natural images and models [C] //Proceedings of Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 1999:541-547.
  • 6Roth S, Black M J. Fields of experts: a framework for learning image priors [C] //Proceedings of Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2005:860-867.
  • 7Levin A. Blind motion deblurring using image statistics [C]// Proceedings of Neural Information Processing Systems. Cambridge: MIT Press, 2006: 841-848.
  • 8Fergus R, Singh B, Hertzmann A, et al. Removing camera shake from a single photograph[J]. ACM Transactions on Graphics, 2006, 25(3): 787-794.
  • 9Shan Q, Jia J, Agarwala A. High-quality motion deblurring from a single image [J]. ACM Transactions on Graphics, 2008, 27(3) : Article No. 73.
  • 10Krishnan D, Fergus R. Fast image deconvolution using hyper-Laplacian priors[C] //Proceedings of Neural Information Processing Systems. Vancouver : Curran Associates, Inc, 2009:1033-1041.

共引文献9

同被引文献33

  • 1Hu Z, Yang M H. Good regions to deblur[C] //Proceedings ofEuropean Conference on Computer Vision. Heidelberg: Springer,2012: 59-72.
  • 2Fergus R, Singh B, Hertzmann A, et al. Removing camera shakefrom a single photograph[J]. ACM Transactions on Graphics,2006, 25(3): 787-794.
  • 3Shan Q, Jia J Y, Agarwala A. High-quality motion deblurringfrom a single image[J]. ACM Transactions on Graphics, 2008,27(3): Article No.73.
  • 4Cho S, Lee S. Fast motion deblurring[J]. ACM Transactions onGraphics, 2009, 28(5): Article No.145.
  • 5Levin A, Weiss Y, Durand F, et al. Understanding and evaluatingblind deconvolution algorithms[C] //Proceedings of IEEEConference on Computer Vision and Pattern Recognition. LosAlamitos: IEEE Computer Society Press, 2009: 1964-1971.
  • 6Xu L, Jia J Y. Two-phase kernel estimation for robust motiondeblurring[M] //Lecture Notes in Computer Science. Heidelberg:Springer, 2010, 6311: 157-170.
  • 7Krishnan D, Tay T, Fergus R. Blind deconvolution using anormalized sparsity measure[C] //Proceedings of IEEE Conferenceon Computer Vision and Pattern Recognition. Los Alamitos:IEEE Computer Society Press, 2011: 233-240.
  • 8Xu L, Zheng S C, Jia J Y. Unnatural L0 sparse representationfor natural image deblurring[C] //Proceedings of the 25th IEEEConference on Computer Vision and Pattern Recognition. LosAlamitos: IEEE Computer Society Press, 2013: 1107-1114.
  • 9Michaeli T, Irani M. Blind deblurring using internal patch recurrence[M] //Lecture Notes in Computer Science. Heidelberg:Springer, 2014, 8691: 783-798.
  • 10Cao X C, Ren W Q, Zuo W M, et al. Scene text deblurring usingtext-specific multiscale dictionaries[J]. IEEE Transactionson Image Processing, 2015, 24(4): 1302-1314.

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部