期刊文献+

情感识别中脑电信号Lempel-Ziv复杂度的研究 被引量:3

Research of Lempel-Ziv Complexity for Electroencephalographic Signal in Emotion Recognition
下载PDF
导出
摘要 在生理信号中,基于脑电信号的情感识别越来越引起研究者的重视。Lempel-Ziv复杂度测量是一种有效的非线性脑电信号分析方法,同时在情感脑—机接口系统中还可以用于进行情感的识别。文章在传统Lempel-Ziv复杂度算法的基础上,提出一种新的Lempel-Ziv复杂度算法,从而更好地进行基于脑电信号的情感识别。首先进行脑电信号的预处理,通过小波包变换来保留脑电信号的低频信号;然后利用非线性滤波器来移除脑电信号中的奇异值;进一步我们提出一种有效的自适应Lempel-Ziv复杂度算法来度量脑电信号的复杂度,并应用此特征值来识别情感。实验结果证明此方法可以从脑电信号中提取出更多有效的模式。同时,它还能够精确地检测到脑电信号的振荡情况,从而提取出不同情感状态下脑电信号中本质的非线性特性。 Emotion recognition in electroencephalographic signal is attracting more and moreattentions in medical signal literature. Lempel-Ziv Complexity (LZC) measurement is an effectivemethod for nonlinear dynamical analysis of electroencephalogram(EEG), and also for emotionrecognition in affective Brain-Computer Interface (aBCI) system. In this paper, an improved al-gorithm based on conventional LZC was presented for solving the emotion recognition issue inEEG. The EEG signal is first preprocessed by employing wavelet packet transform to removeEEG series with low-frequency. Then, a nonlinear filter is used to remove ectopoic values fromEEG. Furthermore, an effective adaptive LZC algorithm for measuring complexity of EEG signalwas proposed and applied to recognize the emotion. The experiment demonstrates that the pro-posed method can effectively discover more patterns occurred in EEG signals. Also, it can pre-cisely detect oscillation of EEG signals, which may extract intrinsic nonlinearity in EEG-based e-motion recognition.
出处 《太原理工大学学报》 CAS 北大核心 2014年第6期758-763,共6页 Journal of Taiyuan University of Technology
基金 国家自然科学基金资助项目:抑郁症fMRI数据分析方法及辅助诊断冶疗模型研究(61170136) 多模态脑功能复杂网络分析方法及应用研究(61373101)
关键词 脑电信号 非线性动力学 Lempel-Ziv复杂度 情感识别 Electroencephalographic Signal Nonlinear Dynamics Lempel-Ziv Complexity E- motion Recognition
  • 相关文献

参考文献2

二级参考文献17

  • 1毛大伟,张宏,童勤业.利用不同尺度下复杂性的差异区分文字和照片[J].计算机辅助设计与图形学学报,2005,17(8):1834-1838. 被引量:2
  • 2裴晓梅,和卫星,郑崇勋.基于脑电复杂度的意识任务的特征提取与分类[J].中国生物医学工程学报,2005,24(4):421-425. 被引量:11
  • 3Mason S G, Birch G E. A General Framework for Brain-Computer Interface Design [ J ]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003,11 ( 1 ) : 70- 85.
  • 4Milan J R. Adaptive Brain Interfaces [ J ]. Communications of the ACM ,2003,46 ( 3 ) :74-80.
  • 5Milan J R, Mourino J. Asynchronous BCI and Local Neural Classifiers:An Overview of the Adaptive Brain Interface Project [J ]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003,11 ( 2 ) : 159 - 161.
  • 6Guger C,Schlogl A, Neuper C, et al. Rapid Prototyping of an EEG- Based Brain-Computer Interface ( BCI ) [ J ]. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2001,9( 1 ) :49-58.
  • 7Wang Xingyuan, Luo Chao, Meng Juan. Nonlinear Dynamic Research on EEG Signals in HAI Experiment [ J ]. Applied Mathematics and Computation,2009,207 ( 1 ) : 63-74.
  • 8Lempel A,Ziv J. On the Complexity of Finite Sequence [ J ]. IEEE Transactions on Information Theory, 1976,22 ( 1 ) :75-81.
  • 9BCI Competition Data set, http://bbci, de/competition/ii/down- load.
  • 10Pfurt scheller G, da Silva Lopes F H. Event-Related EEG/MEG Synchronization and Desynchronization: Basic Principles [ J ]. Clinical Neurophysiology, 1999,110 ( 11 ) : 1842-1857.

共引文献34

同被引文献13

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部