期刊文献+

剩余格上Riean态的存在性

On the Existence of Riean States on Residuated Lattices
原文传递
导出
摘要 在good剩余格上研究Riean态的存在性。证明了good剩余格上Riean态的核是一个真弱正规滤子,但不是正规滤子。进一步,给出了good剩余格上Riean态存在的充分必要条件。此外,证明了可表示剩余格至多只有一个固定点。 The aim of this paper is to study the existence of Riecan states on good residuated lattices.We prove that the kernel of Riecan states on good residuated lattices is a proper weak normal filter,and is not a normal filter.Furthmore,the necessary and sufficient conditions for good residuated lattices having Riecan states are obtained.In addition,the fixpoint of residuated lattices is investigated and it is proved that each representable residuated lattice has at most one fixpoint.
机构地区 江南大学理学院
出处 《模糊系统与数学》 CSCD 北大核心 2014年第5期33-40,共8页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(60605017 60875084 61273017) 中央高校基本科研业务费专项资金项目(JUSRP21118 JUSRP211A24) 江苏省高校优秀中青年教师和校长境外研修计划项目
关键词 剩余格 Riecan态 MV-滤子 Residuated Lattice Riecan States MV-filter
  • 相关文献

参考文献15

  • 1Ciungu L C. On the existence of states on fuzzy structures[J]. Southeast Asian Bull. Math,2009,33:1041-1062.
  • 2Georgescu G. Bosbach states on fuzzy structures[J]. Soft Comput, 2004,8 : 217 - 230.
  • 3Dvurecensklj A. States on pseudo MV-algebras[J]. Studia Logica, 2001,68 : 301- 327.
  • 4Pei D W. On equivalent forms of fuzzy logic systems NM and IMTL[J]. Fuzzy Sets Syst, 2003,138:187- 195.
  • 5裴道武,王国俊.形式系统~*的完备性及其应用[J].中国科学(E辑),2002,32(1):56-64. 被引量:93
  • 6Mundici D. Averaging the truth-value in Lukasiewicz logic[J]. Studia Logica,1995,55:113-127.
  • 7v Ciungu L C. Bosbach states and Rlecan states on residuated lattices[J]. J. Appl. Funct. Anal. ,2008,2:175- 188.
  • 8Ciungu L C, Georgescu G, Muresan C. Generalized Bosbach states: part I [J]. Arch. Math. Logic,DOI 10. 1007/ s00153-012-0319-2.
  • 9Dvureeensklj A. Every linear pseudo BL-algebra admits a state[J]. Soft Comput. ,2007,11:495- 501.
  • 10Liu L Z. States on finite monoidal t-norm based algebras[J]. Inform. Sci. ,2011,181:1369-1383.

二级参考文献5

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部