期刊文献+

高精度有限体积法与间断有限元法的比较 被引量:3

Comparison of high-precision finite volume method and discontinuous Galerkin method
下载PDF
导出
摘要 通过数值算例,比较了高精度有限体积法和间断有限元法在求解不同问题时的表现。研究发现:在精度相同的条件下,间断有限元法的计算误差要明显小于有限体积法;间断有限元法的重构过程与高精度有限体积法相比较为简单,但高阶情形下解多项式的自由度较多并且需要计算体积分,因此整个求解时间较长。降低时间积分时解多项式的自由度数目是实现高精度算法在实际问题中应用的重要手段。 The high-precision finite volume method (FVM)and discontinuous Galerkin method (DGM)were compared in different test cases through numerical examples.Results show that:with the same precision,the calculation error of DGM is obviously less than that of FVM;DGM's reconstruction process is comparatively simpler than FVM's,but its computational time is much longer since its freedom-degree of polynomial solution is higher under the condition of high order and it needs to calculate volume points.Decreasing the freedom-degree numbers of polynomial solution in the time evolution process is an essential method for high-precision calculation in the reality applications.
作者 范进之 李桦
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2014年第5期33-38,共6页 Journal of National University of Defense Technology
基金 中国航天科技集团公司航天科技创新基金资助项目(CALT-16)
关键词 高精度格式 有限体积法 间断有限元法 high-precision schemes finite volume method discontinuous Galerkin method
  • 相关文献

参考文献9

  • 1成娟,舒其望.计算流体力学中的高精度数值方法回顾(英文)[J].计算物理,2009,26(5):633-655. 被引量:21
  • 2刘君,白晓征,郭正.非结构动网格计算方法-及其在包含运动界面的流场模拟中的应用[M].长沙:国防科技大学出版社,2003:46-54.
  • 3Zhu J, Qiu J X, Shu C W, et al. Runge - Kutta discontinuousGaierkin method using WENO limiters II ?? unstructured meshes[J ]. Journal of Computational Physics, 2008, 227 : 4330-4353.
  • 4Dumbser M,Balsara D S,Toro E F,et al. A unified frameworkfor the construction of one-step finite volume and discontinuousGaierkin schemes on unstructured meshes [ J ]. Journal ofComputational Physics, 2008 , 227 (18 ) ;B209 - 8253.
  • 5Luo H, Luo L Q, Nourgaliev R, et al. A reconstructeddiscontinuous Gaierkin method for the compressible Navier-Stokes equations on arbitrary grids [ J ]. Journal ofComputational Physics, 2010,229( 19) :6961 -6978.
  • 6Zhang L P, Liu W, He L X, et al. A class of hybrid DG/FVmethods for conservation laws I: basic formulation and one -dimensional systems [ J ]. Journal of Computational Physics,2012,231(4):1081 -1103.
  • 7Yong-Tao Zhang,Chi-Wang Shu.Third Order WENO Scheme on Three Dimensional Tetrahedral Meshes[J].Communications in Computational Physics,2009,5(2):836-848. 被引量:6
  • 8Luo H,Baum J D, Lohner H. A hermite WENO-based limiterfor discontinuous Gaierkin method on unstructured grids [ J ].Journal of Computational Physics, 2007 , 225:686 -713.
  • 9Krivodonova L, Xin J, Remade J, et al. Shock detection andlimiting with discontinuous Gaierkin methods for hyperbolicconservation laws[ J]. Applied Numerical Mathematics,2004,48(3-4):323 -338.

二级参考文献157

  • 1Zhengfu Xu,Chi-Wang Shu.ANTI-DIFFUSIVE FINITE DIFFERENCE WENO METHODS FOR SHALLOW WATER WITH TRANSPORT OF POLLUTANT[J].Journal of Computational Mathematics,2006,24(3):239-251. 被引量:2
  • 2Minion M L. Semi-implicit spectral deferred correction methods for ordinary differential equations [ J]. Communications in Mathematical Sciences, 2003, 1: 471- 500.
  • 3Xia Y, Xu Y, Shu C-W. Efficient time discretization for local discontinuous Galerkin methods [J]. Discrete and Continuous Dynamical Systems-Series B, 2007, 8: 677- 693.
  • 4Strang G. On the construction and comparison of difference schemes [J]. SIAM Journal on Numerical Analysis, 1968, 5: 506- 517.
  • 5Shu C-W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes,Ⅱ[ J]. Journal of Computational Physics, 1989, 83: 32- 78.
  • 6Jiang G-S, Shu C-W. Efficient implementation of weighted ENO schemes [J]. Journal of Computational Physics, 1996, 126: 202- 228.
  • 7Shu C-W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[ M]//Cockbum B, Johnson C, Shu C-W, Tadmor E (Editor: A Quarteroni), Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, volume 1697, Springer, 1998: 325- 432.
  • 8Roe P. Approximate Riemann solvers, parameter vectors and difference schemes [ J ]. Journal of Computational Physics, 1978, 27 : 1 -31.
  • 9Qiu j-x, Shu C-W. On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes [ J]. Journal of Computational Physics, 2002, 183:187 -209.
  • 10Merryman B. Understanding the Shu-Osher conservative finite difference form [ J]. Journal of Scientific Computing, 2003, 19:309 - 322.

共引文献26

同被引文献25

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部