期刊文献+

有噪条件下基于正则化模型的本体学习算法 被引量:6

Ontology learning algorithm based on regularization model under noise condition
下载PDF
导出
摘要 对原有的正则化本体模型加以改进,分别从再生核希尔伯特空间及线性空间Rm出发,得到有噪或半监督学习框架下的新正则化求解模型,将计算模型的注意力集中到假设空间的设置上.实验表明,新算法对特定的应用领域具有较高的效率. The regularization ontology model is improved by using the reproducing kernel Hilbert space and linear space of Rm ,and a new regularization model in semi-supervised learning setting is obtained.This new model focuses on the designing of hypothesis space.Two experiments show that the new algorithm for specific applications has higher efficiency.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2014年第6期41-45,共5页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(61142007) 江苏省高校自然科学研究项目(10KJD520002)
关键词 本体 相似度 本体映射 再生核希尔伯特空间 ontology similarity ontology mapping RKHS
  • 相关文献

参考文献17

二级参考文献88

  • 1淦文燕,李德毅,王建民.一种基于数据场的层次聚类方法[J].电子学报,2006,34(2):258-262. 被引量:83
  • 2唐杰,梁邦勇,李涓子,王克宏.语义Web中的本体自动映射[J].计算机学报,2006,29(11):1956-1976. 被引量:98
  • 3黄果,周竹荣.基于领域本体的概念语义相似度计算研究[J].计算机工程与设计,2007,28(10):2460-2463. 被引量:67
  • 4Cohen W, Ravikumar P, Fienberg S. A comparison of string distance metrics for name-matching tasks//Proceedings of the IJCAI Workshop on Information Integration on the Web (IIWeb). Aeapulco, Mexico, 2003: 73-78.
  • 5Budanitsky A, Hirst G. Evaluating WordNet based measures of lexical semantic relatedness. Computational Linguistics, 2006, 32(1): 13-47.
  • 6Do H-H, Rahm E. COMA A system for flexible combination of schema matching approaches//Proceedings of the 28th International Conference on Very Large Data Bases(VLDB). Hong Kong, China, 2002:610- 621.
  • 7Melnik S, Garcia-Molina H, Rahm E. Similarity flooding: A versatile graph matching algorithm and its application to schema Matching//Proceedings of the 18th International Conference of Data Engineering (ICDE). San Jose, California, 2002. 117-128.
  • 8Isaac A, Meij L, Schlobach S, Wang S. An empirical study of instance based ontology matching//Proceedings of the 6th International Semantic Web Conference and the 2nd Asian Semantic Web Conference (ISWC/ASWC). Busan, Korea, 2007, 253 -266.
  • 9Wang S, Englebienne G, Schlobach S. Learning concept mappings from instance similarity//Proceedings of the 7th International Semantic Web Conference (ISWC). Karlsruhe, Germany, 2008:339- 355.
  • 10Udrea O, Getoor L, Miller R. Leveraging data and structure in ontology integration//Proceedings of the 26th International Conference on Management of Data (SIGMOD). Beijing, China, 2007:449-460.

共引文献56

同被引文献37

  • 1BORWEIN J M, LEWIS A S. Convex analysis and nonlinear optimization:theory and examplesEM:. Publisher: Springer, 2006,50-60.
  • 2JENATTON R,MAIRAL J,OBOZINSKI G,et al. Proximal methods for sparse hierarchical dictionary learningEC:. In Proceedings of the International Conference on Machine Learning, Haifa,Israel,487-494.
  • 3BECK A,TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SI- AM Journal on Imaging Sciences,2009,2(1):183-202.
  • 4CRASWELL N,HAWKING D. Overview of the TREC 200a web track[-C:l. Proceedings of the Twelfth Text Retrieval Conference,Gaithersburg,Maryland,NIST Special Publication,2003:78-92.
  • 5WANG Y,GAO W,ZHANG Y,et al. Ontology similarity computation use ranking learning Method[Cj. The 3rd International Cxmference on Computational Intelligence and Industrial Application, Wuhan, China, 2010 : 20-22.
  • 6HUANG X, XU T, GAO W, et al. Ontology Similarity Measure and Ontology Mapping Via Fast Ranking Method[J]. International Journal of Applied Physics and Mathematics, 2011,1 (1) : 54-59.
  • 7GAO W,LIANG L. Ontology similarity measure by optimizing NDCG measure and application in physics edu- cation[J]. Future Communication,Computing,Control and Management, 2011,142 ; 415-421.
  • 8CRASWELL N,HAWK1NG D. Overview of the TREC 2003 web track[C]. Proceedings of the Twelfth Text Retrieval Conference. Gaithersburg,Maryland,NIST Special Publication,2003:78-92.
  • 9GAO W,GAO Y,LIANG L. Diffusion and harmonic analysis on hypergraph and application in ontology simi- larity measure and ontology mapping[J]. Journal of Chemical and Pharmaceutical Research,2013,5(9):592 598.
  • 10WANG Y, GAO W, ZHANG Y, et al. Ontology simi- larity computation use ranking learning Method[C]//The 3rd International Conference on Computational Intelligence and Industrial Application. Wuhan.. E s. n., 2010 ; 20-22.

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部