期刊文献+

质子导体BaCe_(0.8)Lu_(0.2)O_(3-α)的电性能(英文)

Electrical Properties of Proton Conductor BaCe_(0.8)Lu_(0.2)O_(3-α)
下载PDF
导出
摘要 采用高温固相法制备了BaCe0.8Lu0.2O3-α质子导体。运用X射线衍射仪(XRD)、扫描电镜(SEM)对该材料的物相结构、微观形貌进行了表征。在500~900℃温度范围内,应用交流阻抗谱和气体浓差电池方法研究了材料在不同气体气氛中的离子导电性和氢-空气燃料电池性能。结果表明,BaCe0.8Lu0.2O3-α材料为单一斜方晶结构,具有良好的致密性。在500~900℃温度范围内,干燥或湿润的氮气、空气和氧气中,材料的电导率随着氧分压增大稍有增大。在湿润的氢气中,材料表现为纯的质子导电性。在以该材料为固体电解质的氢-空气燃料电池条件下,材料表现为质子、氧离子和电子的混合导电性,其中离子导电性始终占主导;氢-空气燃料电池在900℃下的最大输出功率密度为92.2mW·cm^-2,高于我们以前报道的BaCe0.8RE0.2O3-α(RE=Pr,Eu,Ho,Er,等)材料。 Proton conductor Ba Ce0.8Lu0.2O3-αwas prepared by the conventional solid state reaction route. The crystalline phase and microstructures of the material were characterized by XRD and SEM respectively. In the temperature range of 500~900 ℃, the ionic conduction under different gas atmospheres and the performance of the hydrogen-air fuel cell of the material were studied by using ac impedance spectroscopy and gas concentration cell methods. The results indicate that the material with good compactness has an orthorhombic structure. In the temperature range of 500 ~900 ℃, the conductivities of the material in dry or wet nitrogen, air and oxygen increase slightly with increasing oxygen partial pressure. The material shows pure proton conduction in wet hydrogen, and mixed conduction of proton, oxide ion and electron in hydrogen-air fuel cell. The maximum power output density of the fuel cell using the material as solid electrolyte is 92.2 m W·cm^-2, higher than all that of Ba Ce0.8RE0.2O3-α(RE=Pr, Eu, Ho, Er, etc) reported previously.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2014年第11期2503-2508,共6页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(No.21376204) 江苏省高校自然科学基金(No.13KJB150038)资助项目
关键词 BaCe0.8Lu0.2O3-α 阻抗谱 气体浓差电池 电性能 Ba Ce0.8Lu0.2O3-α ac impedance gas concentration cell electrical property
  • 相关文献

参考文献17

  • 1Iwahara H, Uchida H, Ono K, et al. J. Electrochem,. Soc., 1988,135:529-533.
  • 2Peng R R, Wu Y, Yang I, Z, et al. Solid State hmics, 2006, 177:389-393.
  • 3Hamakawa S, hibino T, lwahara H. J. Electrochem. Sot., 1994,141:1720-1725.
  • 4Iwahara H, Shimura T, Matsumoto H, et al. Electrochemistry, 2000,3:154-160.
  • 5Cammarata A, Emanuele A, Martorana A, et al. J. Phys. Chem. A, 2011,115:1676-1685.
  • 6Oishi M, Yashiro K, Stato K, et al. Solid State Ionics, 2008, 179:529-535.
  • 7Bhella S S, Furstenhaupt T, Paul R, et al. Inorg. Chem., 2011,50:6493-6499.
  • 8Qiu L G, Ma G L, Wen D J. J. Rare Earths, 2004,22:678-682.
  • 9Qiu L G, Ma G L, Wen D J. Chin. J. Chem., 2005,23:1641- 1645.
  • 10Qiu L G, Ma G L, Wen D J. Solid State Ionics, 2004,166 69-75.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部