期刊文献+

碳酸化羟基磷灰石支架及其细胞因子复合物修复鼠胫骨缺损的实验研究 被引量:2

In Vivo Study on Tibia Bone Defect Reconstruction with Carbonated Hydroxyapatite Scaffold and Its Cytokines Composite in SD Rats
下载PDF
导出
摘要 目的:通过动物实验检测碳酸化羟基磷灰石支架材料(carbonated hydroxyapatite,CAP)的骨传导性和生物吸收性。并探讨骨形成蛋白-2(rhBMP-2)、重组人巨噬细胞集落刺激因子(rhM-CSF)对CAP成骨特性和生物吸收的影响。方法:选取45只雄性SD大鼠,制备双侧胫骨临界性骨缺损模型,以复合骨形成蛋白-2(rhBMP-2)的碳酸化羟基磷灰石支架材料、复合重组人巨噬细胞集落刺激因子(rhM-CSF)的碳酸化羟基磷灰石支架材料、单纯的碳酸化羟基磷灰石支架材料作为实验组,羟基磷灰石(hydroxyapatite,HAP)作为对照组,植入大鼠胫骨缺损处,并设立空白对照组。术后2、4和8周,通过组织学观察对比新骨形成和材料吸收降解情况。结果:实验组和对照组材料均能完全充填骨缺损,材料界面与骨组织结合紧密,显示了良好的生物相容性和成骨性能。随着植入时间的延长,实验组材料可逐渐降解并被新生骨爬行替代,而对照组未见显著降解和新生骨替代。rhM-CSF能够促进碳酸化羟基磷灰石材料的降解,与CAP组、CAP/rhBMP-2复合物组比较,差异有统计学意义。结论:CAP具有出色的骨传导性和生物吸收性,是一种良好的骨再生移植物。且该支架材料的成骨性和生物降解能够被成骨及破骨细胞因子所调控。 Objective: ① To evaluate the osteoconductivity and bioresorbability of the carbonated hydroxyapatite(CAP)scaffold. ② To evaluate the effects of rhBMP-2 and rhM-CSF on bone defect reconstruction with CAP scaffold. Methods:45 male SD rats were comprised in this experiment and randomly divided into 5 groups. A 4 mm ×4 mm critical-size bone defect was created in both sides of tibia in all rats. Group A, CAP was placed into the defect; Group B, placed with CAP/rhBMP-2; Group C, CAP/rhM-CSF was placed; Group D, HAP was placed; and Group E, bone defect left void as control.At 2- week, 4- week and 8-week after restoration, the formation of new bone and the absorption of the materials were observed under histological examination. Results: Bone defects were filled completely in experimental groups. The biocompatiblility was fine. Bone directly bonded to the CAP scaffold. During the native bone remodeling process, the CAP scaffold was replaced by new bone as CAP degraded in the experimental groups. But in the HAP group, the decomposition and replacing processes was not significant. rhM-CSF promoted significantly the degradation of carbonated hydroxyapatite scaffold since week 4. Conclusion: ①Carbonated hydroxyapatite scaffold showed good osteoconductivity and bioresorbabiloly in vivo. ② rhM-CSF can promote the degradation of carbonated hydroxyapatite scaffold.
出处 《口腔颌面外科杂志》 CAS 2014年第5期330-335,共6页 Journal of Oral and Maxillofacial Surgery
基金 上海市科学技术委员会浦江人才项目(10PJ1410500)
关键词 碳酸化羟基磷灰石支架 骨形成蛋白-2(BMP-2) 巨噬细胞集落刺激因子(M-CSF) 骨缺损重建 carbonated hydroxyapatite scaffold BMP-2 M-CSF bone defect reconstruction rats
  • 相关文献

参考文献14

  • 1Decoster TA,Gehlert RJ,Mikola EA,et al.Management of posttraumatic segmental bone defects[J].J Am Acad Orthop Surg,2004,12(1):28-38.
  • 2Zeng D,Xia L,Zhang W,et al.Maxillary sinus floor elevation using a tissue-engineered bone with calciummagnesium phosphate cement and bone marrow stromal cells in rabbits[J].Tissue Eng Part A,2012,18(7-8):870-881.
  • 3战策,陈建荣,石川邦夫,张磊.生物性多孔碳酸化羟基磷灰石支架的制备[J].口腔颌面外科杂志,2011,21(4):247-250. 被引量:3
  • 4Riley EH,Lane JM,Urist MR,et al.Bone morphogenetic protein-2:biology and applications[J].Clin Orthop Relat Res,1996(324):39-46.
  • 5Abboud SL,Woodruff KA,Choudhury GG.Retroviralmediated gene transfer of CSF-1 into op/op stromal cells to correct defective in vitro osteoclastogenesis[J].J Cell Physiol,1998,176(2):323-331.
  • 6Legeros RZ.Calcium phosphates in oral biology andmedicine[J].Monogr Oral Sci,1991,15(84):1-201.
  • 7Teitelbaum SL.Bone resorption by osteoclasts[J].Science,2000.289(5484):1504-1508.
  • 8郝立波,毛克亚,王继芳,卢世璧.碳酸化磷灰石与骨界面结合强度的生物力学特征研究[J].中国临床康复,2004,8(20):3978-3980. 被引量:7
  • 9Schmidmaier G,Schwabe P,Strobel C,et al.Carrier systems and application of growth factors in orthopaedics[J].Injury,2008,39 Suppl 2:S37-S43.
  • 10Zara JN,Siu RK,Zhang X,et al.High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo[J].Tissue Eng Part A,2011,17(9-10):1389-1399.

二级参考文献26

  • 1郝立波,毛克亚,王继芳,卢世璧.碳酸化磷灰石与骨界面结合强度的生物力学特征研究[J].中国临床康复,2004,8(20):3978-3980. 被引量:7
  • 2毛克亚,郝立波,唐佩福,王继芳,王岩,卢世璧,卢世琳,贺大为.碳酸化羟基磷灰石水泥修复骨缺损的实验研究[J].生物医学工程与临床,2004,8(3):129-132. 被引量:17
  • 3卢世壁 朱盛修 等.TJ骨粘固剂的研制及临床应用[J].中华外科杂志,1980,15:258-261.
  • 4[1]Constanz BR, Ison IC, Fulmer MT, et al. Skeletal repair by in situ formation of the mineral phase of bone. Science 1995; 267(24): 1796-99
  • 5[2]Robert. Coral chemistry leads to human bone repair. Science 1995; 267(24):1772
  • 6[5]Yetkinler DN, Goodman SB, Reindel ES, et al. Mechanical evaluation of a carbonated apatite cement in the fixation of unstable intertrochanteric fractures. Acta Orthop Scand 2002; 73 (2): 157 - 64
  • 7[6]Ooms EM, Verdonschot N, Wolke JG, et al. Enhancement of initial stability of press-fit femoral stems using injectable calcium phosphate cement; an in vitro study in dog bones. Biomaterials 2004; 25 (17): 3887 - 94
  • 8[11]Hoshikawa A, Fukui N, Fukuda A, et al. Quantitative analysis of the resorption and osteoconduction process of a calcium phosphate cement and its mechanical effect for screw fixation. Biomatreials 2003; 24 ( 27 ): 4967 - 75
  • 9[12]Taniwaki Y, Takemasa R, Tani T, et al. Enhancement of pedicle svrew stability using calcium phosphate cement in osteoporotic vertebrae: in vivo biomechanical study. J Orthop Sci 2003; 8 (3): 408 - 14
  • 10[13]Ooms EM, Wolke JG, van der Waerden JP, et al. Use of injectable calcium-phosphate cement for the fixation of titanium implants: an experimental study in goats. J Biomed Mater Res 2003; 66B ( 1 ): 447 - 56

共引文献8

同被引文献35

  • 1Ayta~ S, Schnetzke M, Swartman B,et al.Posttraumatic and postoperative osteomyelitis: surgical revision strategy with persisting fistula.Arch Orthop Trauma Surg. 2014;134(2): 159-165.
  • 2Yetkinler DN,McClellan RT, Reindel ES,et al.Biomechanical com- parison of conventional open reduction and internal fixation versus calciumphosphate cement fixation of a centra depressed tibial plateau fracture.J Orthop Trauma.2011; 15(3): 197-206.
  • 3Lowenberg DW, Buntic RF, Buncke GM,et al.Long-term results and costs of muscle flap coverage with Ilizarov bone transport in lower limb salvage.J Orthop Trauma. 2013; 27(10):576-581.
  • 4Papakostidis C, Bhandari M, Giannoudis PV.Distraction osteogenesis in the treatment of long bone defects of the lower limbs: effectiveness, complications and clinical results a systematic review and meta-analysis.Bone Joint J. 2013; 95-B(12):1673-1680.
  • 5Mouzopoulos G, Kanakaris NK, Kontakis G, et al.Management of bone infections in adults:the surgeon' s and microbiologist's perspectives.Injury.2011 ;42 (S5):S18-S23.
  • 6Cha SM, Shin HD, Kim KC,et al.Plating after tibial lengthening unilateral monoaxial external faxator and locking plate.J Pediatr Orthop B.2013;22(6):571-576.
  • 7Zeng D,Xia L,Zhang W, et alMaxillary sinus floor elevation using a tissue-engineered bone with calciummagnesium phosphate cement and bone marrow stromal cells in rabbits[J].Tissue Eng Part A.2012;18(7-8):870-881.
  • 8Krappinger D, Irenberger A,Zegg M,et al.Treatment of large posttraumatic tibial bone defects using the Ilizarov method: a subjective outcome assessment.Arch Orthop Trauma Surg. 2013;133(6):789-795.
  • 9Atef A, EI-Tantawy A.Management of open infected comminuted tibial fractures using Ilizarov concept.Eur J Orthop Surg Traumatol.2014;24(3):403-408.
  • 10张咏,周许辉,陈雄生,顾晓民,贾连顺.骨质疏松大鼠胫骨骨缺损应用硫酸钙骨水泥填充后骨密度的变化[J].第二军医大学学报,2008,29(5):569-571. 被引量:3

引证文献2

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部