期刊文献+

基于广义多重分形维数算法的汽车变速箱故障诊断研究 被引量:1

Study on Multiple Fractal Fault Diagnosis of Gear Wear
下载PDF
导出
摘要 提出了一种基于扩展广义多重分形维数算法的汽车变速箱故障诊断方法。该算法是基于传统的G-P关联维数算法扩展而形成的,通过该算法对变速箱上采集的不同工作状态下的振动信号进行处理,提取变速箱齿轮的振动信号的分数维,观察及分析分形维数与变速箱齿轮的磨损规律的关系,发现其反映变速箱齿轮的真实运行状态,故可以此作为齿轮磨损预测和诊断的有效依据。 Proposed auto gearbox fault diagnosis method based on generalized multi-fractal dimension algorithm.Using an exten-sion from the traditional G-P correlation dimension algorithm from generalized multi-fractal dimension algorithm can be com-pleted simply and reliably calculate the fractal dimension of the generalized multiple vibration signal.The algorithm of vibra-tion signals through different working conditions under the gearbox col ected are processed to extract the fractal dimension of the gearbox vibration signal,the fractal dimension is found to reflect the laws of gear wear can reflect the true state of the transmission operation,and gear wear can be predicted and diagnosis.
作者 聂建华 杨振
出处 《工业控制计算机》 2014年第12期51-52,55,共3页 Industrial Control Computer
关键词 分形 多重分形 齿轮 振动信号 故障诊断 fractal multifractal gear vibration signal fault diagnosis
  • 相关文献

参考文献5

二级参考文献17

  • 1王志,艾延廷,沙云东.基于BP神经网络的航空发动机整机振动故障诊断技术研究[J].仪器仪表学报,2007,28(S1):168-171. 被引量:38
  • 2张济忠,分形,1995年,120页
  • 3李后强,分形理论及其在分子科学中的应用,1993年,190页
  • 4钟秉林,黄仁.机械故障诊断学[M].北京:机械工业出版社,2007.119-131.
  • 5Vapnik V N. The nature of statistical learning theory [M]. New York: Spring-Verlag, 1999 : 139-141.
  • 6Hu Qiao, He Zhengjia, Zhang Zhousuo, et al. Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMS ensemble [J]. Mechanical Systems and Signal Processing, 2007(21): 688-705.
  • 7Wang D, Tse P W, Guo W, et al. Support vector data description for fusion of multiple health indicators for enhancing gearbox fault diagnosis and prognosis [J]. Measurement Science and Technology, 2011 (22) : 025102.
  • 8Xian Guanming, Zeng Biqing. An intelligent fault di- agnosis method based on wavelet packer analysis and hybrid support vector machines[J]. Expert Systems with Applications, 2009(36) :12131-12136.
  • 9Yuan Shengfa, Chu Fulei. Support vector machines- based diagnosis for turbo-pump rotor[J]. Mechanical Systems and Signal Processing, 2006(20):939-952.
  • 10Smola A J, Scholkopf B. A tutorial on support vector regression[J]. Statistics and Computing, 2004 (14) : 199-222.

共引文献54

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部