期刊文献+

基于结构纹理分解和多重网格的光流估计算法 被引量:3

An Improved Optical Flow Estimation Method Based on Structure-Texture Decomposition and Multiple Grid Method
下载PDF
导出
摘要 分别针对光流计算对光照变化敏感以及运算复杂度高、迭代收敛缓慢的问题,使用一种基于ROF(Rudin-Osher-Fatemi)模型的结构纹理分解(STD)技术得到对光照变化不敏感的纹理图估计光流场,消除了光照变化产生的负面影响,并提出一种基于多重网格方法的分层处理策略.将光流计算的迭代过程分散在一系列粗细不同的网格上,在细网格上消除高频误差,在粗网格上消除低频误差,以达到加速收敛、提高光流计算速度的目的.实验结果表明,STD过程抑制了光照变化导致的负面影响,提高了光流估计精度.多重网格算法在保持优化精度的前提下,显著提高了光流计算的实时性. The estimation of optical flow suffers from its sensitivity to illumination variation, its high computational complexity and slow convergence property which severely compromise its performance. In order to tackle the aforementioned problems, a structure-texture decomposition technique based on ROF(Rudin- Osher-Fatemi) model was introduced to deal with the variation in illumination, and a multi-grid based opti- cal flow hierarchy strategy was presented for a fast implementation. The iterative procedure was proposed to be distributed on several grid layers with different resolutions in order to obtain a fast convergence and, in turn, accelerated the optical flow computation. The finer grid promised to eliminate higher frequency errors while the coarser level was employed to cope with lower frequency components. It is revealed from the experimental results that the structure-texture decomposition is robust against the variation in illumination, and is beneficial for estimation accuracy. Additionally, the multi-grid method offers an improved real- time performance, without deteriorating the optimization accuracy.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2014年第7期959-964,970,共7页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金(61105033 61175087) 北京市自然科学基金(KZ201110005004)资助项目
关键词 光流 变分法 多重网格法 偏微分方程 结构纹理分解 optical flow variational method multiple grid method partial differential equation structure-texture decomposition(STD)
  • 相关文献

参考文献17

  • 1Wedel A,Brox T,Vaudrey T,et al.Stereoscopic scene flow computation for 3D motion understanding [J].International Journal of Computer Vision,2010.95: 1-23.
  • 2Senst T,Ewmgelio R H,Sikora T,Detecting people carrying objects based on an optical flow molion mod- el [C]//IEEE Workshop on Applications of Computer Vision.Kona.HI,United States: IEEE Computer Society,2011: 301-306.
  • 3Newcombe R.Davison A.l.ive dense reconstruction with a single moving camera [C]// International Con- ference on Computer Vision and Pattern Recognition.San Francisco.CA.United Slates: IEEE Computer Societv,2010: 1198-1505.
  • 4Sanada A,lshii K.Yagi.T.Self localization of an oomnidirectional mobile robot based on an optical flow sensor [J].Journal of Bionic Engineering.2010.7:S172- S176.
  • 5Horn B.Schunck B.Determining optical flow[J].Artificial Intelligence,1981,17: 185-203.
  • 6Perez J S,l.opez N M ,Salgado A J.Parallel imple- mentation of a robust optical flow technique[R].CTIM Technical Report.l.as Palmas de Gran Canar- ia: Universidad de las Palmas de Gran Canaria,2012.
  • 7Bertalmio M,Vese L,Sapiro G,et al.Simultaneous structure and texture image in painting[J].IEEETransactions on Image Processing.2003,1 2( 8) : 882-889.
  • 8昌猛,吴新根,罗立民,舒华忠,傅瑶.一种快速的光流场计算方法[J].东南大学学报(自然科学版),1999,29(5):101-104. 被引量:8
  • 9Bruhn A,Weickett J,Feddern C,et al.Variational optical flow computation in real time[J].IEEE Trans- actions on Image Processing,2005,14(5) : 608-615.
  • 10Bruhn A,Weickert J.A Multigrid platform for real- time motion computation with discontinuity-preser- ving variational methods[J].International Journal of Computer Vision,2006,70(3) :257-277.

二级参考文献7

  • 1泰卡尔普,数字视频处理,1998年,72页
  • 2Fedorenko R EA relaxation method for solving elliptic difference equations[J].USSR Comp Math Math Phys, 1962,1 (5) : 1092-1096.
  • 3Fedorenko R P.The speed of convergence of one itera- tive process[J].USSR Comp Math Math Phys, 1964, 4 (3) :227-235.
  • 4Bakhvalov N S.On the convergence of a relaxation method with natural constraints on the elliptic operator[J]. USSR Comp Math Math Phys, 1966,6: 101-135.
  • 5Brandt A.Multi-level adaptive technique (MLAT) for fast numerical solution to boundary value problems, 82-8[R].Berlin: Springer, 1973.
  • 6Trottenberg U, Oosterlee C W, Schuller A.Multigrid[M]. New York: Academic Press, 2001 : 34-62.
  • 7Elman H C,Ernst O G,O'Leary D P.A mulitigrid meth- od enhanced by Krylov subspace iteration for discrete Helmholtz equations[J].SIAM J Sci Comput, 2001,23: 1290-1314.

共引文献7

同被引文献55

  • 1BruhnAndres,Weickert Joachim,SehnorrChristoph. Lueas/ kanade meets horn/schunek: combining local and global optic flow methods[J]. International Journal of Computer Vision, 2005,61 (3): 1-21.
  • 2Zach C,Pock T,Bischof H. A Duality Based Approach for Realtime TV-L1 Optical Flow [C]//Proceedings of the 29th DAGM Symposium on Pattern Recognition, Heidelberg, Germany:DAGM, 2007: 214-223.
  • 3Shreyamsha Kumar,B.K. Image denoising based on gaussian/ bilateral filter and its method noise thresholding[J]. Signal, Image and Video Processing,2013,7(6):1159-1172.
  • 4Marius Drulea,Sergiu Nedevschi. Total variation regulariza- tion of local-global optical flow [C]//IEEE Conference on In- telligent Transportation Systems, Washington, DC: Institute of Electrical and Electronics Engineers Inc., 2011:318-323.
  • 5Horn B K P, Schunck B G. Determining optical flow. Ar- tificial Intelligence, 1981, 17 ( 1 ) : 185-203.
  • 6Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision. In: Pro- ceedings of the 7th International Joint Conference on Arti- ficial Intelligence, San Francisco, USA, 1981, 81: 674- 679.
  • 7Black M J, Anandan P. The Robust Estimation of Multi- ple Motions: Parametric and Piecewise-Smooth Flow Fields. Computer Vision and Image Understanding, 1996, 63 ( 1 ) : 75-104.
  • 8Brox T, Bruhn A, Papenberg N, et al. High accuracy op- tical flow estimation based on a theory for warping. In: Proceedings of the 8th European Conference on Computer Vision, Heidelberg: Springer, 2004, 3024:25-36.
  • 9Wedel A, Pock T, Zach C, et al. An improved algorithm for TV-L1 optical flow. In: Lecture Notes in Computer Science. Heidelberg: Springer, 2008, 5064:23-45.
  • 10Anandan P. A computational framework and an algorithm for the measurement of visual motion. International Jour- nal of Computer Vision, 1989, 2(3): 283-310.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部