期刊文献+

全驱动式自主水下航行器有限时间编队控制 被引量:3

Finite-time formation control for full-actuated autonomous underwater vehicles
下载PDF
导出
摘要 为了研究了全驱动式自主水下航行器有限时间编队控制问题。针对多AUV编队控制过程中的可变通信拓扑情形,首先通过预定义AUV间的通信距离,将多AUV系统建模为通信拓扑可变系统。其次对AUV三维运动学和动力学进行建模;为实现多AUV编队控制的有限时间控制,提出一种有限时间的二阶一致性控制算法,对AUV的速度(线速度和角速度)和位置(平移和角度)进行一致性协同控制,利用一致性协同后的速度量和位置量以及各AUV的动力学方程,求解各AUV的推力和推力矩。最后通过对可变通信拓扑情形下的多AUV编队控制进行了数值仿真,验证了所提有限时间编队控制策略的有效性。 In order to study the finite-time control of the full-actuated AUV formation,formation control of the fullactuated autonomous underwater vehicles( AUVs) was investigated. The multi-AUV formation system was modeled as a system with variable communication topologies by predefining the communication ranges among AUVs. Next,the kinematics and dynamics equations were modeled. A finite-time consensus algorithm for second-order system was proposed and the consensus on velocities of AUV( linear velocity and angular velocity) and positions( displacement and angles) were carried out. The velocities and positions based on consensus control were substituted into the dynamics equations of every AUV,so the thrust and thrust torque were obtained in three-dimension space.This paper demonstrated the effectiveness of the proposed formation control for multiple AUVs with constraints on variable communication.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2014年第10期1276-1281,共6页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(61074092) 山东省自然科学基金资助项目(ZR2012FL18) 山东省海洋生态环境与防灾减灾重点实验室开放基金资助项目(201308) 海洋公益性项目资助项目(201005025-1) 青岛市科技发展计划资助项目(13-1-4-172-jch) 山东省科学院科技发展计划资助项目(201244) 国际科技合作项目资助项目(2011DFR60810)
关键词 全驱动式自主水下航行器 编队控制 有限时间一致性 可变通信拓扑 full-actuated autonomous underwater vehicle formation control finite-time consensus variable communication topology
  • 相关文献

参考文献10

  • 1LEWIS M A, TAN K H. High precision formation control of mobile robots using virtual structure approach [ J ]. Autono- mous Robots, 1997, 4: 387-403.
  • 2LEONARD N E, FIORELLI E. Virtual leader, artificial po- tentials and coordinated control of groups [ C ]//Proceedings of IEEE Conference on Decision and Control. Orlando, USA, 2001: 2968-2973.
  • 3LAWTON A R, YOUNG B J, BEARD R W. A decentral- ized approach to elementary formation maneuvers [ C ]// IEEE International Conference on Robotics and Automation. San Francisco, USA, 2000: 2728-2733.
  • 4LAWTON J R, BEARD R W, YOUNG B J. A decentralized approach to formation maneuvers [ J ]. IEEE Transactions on Robotics and Automation, 2003, 19(6) : 933-941.
  • 5REN W, SORENSEN N. Distributed coordination architec- ture for multi-robot formation control [ J]. Robotics and Au- tonomous Systems, 2008, 56(4):324-333.
  • 6REN W, BEARD R W. Decentralized scheme for spacecraft formation flying via the virtual structure approach [ J ]. Jour- nal of Guidance, Control and Dynamics, 2004, 27( 1): 73- 82.
  • 7XIANG X B, GUAN Z H. Coordinated control for multi- AUV systems based on hybrid automata [ C ]//Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics. Sanya, China, 2007: 2121-2126.
  • 8TANGIRALA S, KUMAR R, BHATTACHARYYA S, et al. Hybrid-model based hierarchical mission control architecture for autonomous underwater vehicles [ C ]//American Control Conference. Portland, USA, 2005: 668-673.
  • 9YANG E F, GU D B. Nonlinear formation-keeping and mooring control of multiple autonomous underwater vehicles [J]. IEEE/ASME Transactions on Mechatronics, 2007, 2 (2) : 164-178.
  • 10KALANTAR S, ZIMMER U R. Distributed shape control of homogeneous swarms of autonomous underwater vehicles [J]. Autonomous Robots, 2007, 22( 1): 37-53.

同被引文献36

  • 1OLFATI-SABER R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Trans- actions Automatic Control, 2004,49(9) : 1520-1533.
  • 2CHESTER G, WILLIAM N. Using flight manual data to derive aero-propulsive models for predicting aircraft trajectories[J]. AIAA' S Aircraft Technology, Integration, and Operations(ATIO) ,2002,10(1):1-7.
  • 3HARRY S, RICHARD B, MICHAEL L. Next Generation Air Transportation SystemAir Traffic Management Airspace Project[R]. Washington:NASA, 2006 : 1-43.
  • 4Santa. Generation air traffic comtrol system[J]. USA/EURO Control Air Traffic Management RS~D Seminar, 2001,10(2) : 377-378.
  • 5REN W,ATKINS E. Distributed multi-vehicle coordinated control via local information exehange[J].International Journal of Robust and Nonlinear Control, 2007,17 (10) : 1002-1033.
  • 6BRYSON A E,HAM N D. Automatic guidance concept for VTOL aircraft[J]. J of Aircraft,1971, 8(8) :127-135.
  • 7PRICE D B. Feedback control for fuel-optimal descents using singular perturbation techniques[J].Proceedings of NASA, 1984,3 (1) : 198- 203.
  • 8阎振鑫,章卫国,刘小雄,王振华.基于多任务的无人机编队控制研究[J].计算机测量与控制,2009,17(11):2223-2225. 被引量:7
  • 9李广文,蒋正雄,贾秋玲.分布式多无人机编队控制系统仿真[J].计算机仿真,2010,27(2):101-103. 被引量:16
  • 10徐德刚,桂卫华.基于网络一致性的多智能体跟踪控制[J].控制工程,2010,17(3):304-308. 被引量:4

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部