期刊文献+

超越方程的优化解法 被引量:5

The Optimal Solution of Transcendental Equation
原文传递
导出
摘要 针对粒子群算法局部搜索能力差,后期收敛速度慢等缺点,提出了一种改进的粒子群算法,该算法是在粒子群算法后期加入拟牛顿方法,充分发挥了粒子群算法的全局搜索性和拟牛顿法的局部精细搜索性,从而克服了粒子群算法的不足,把超越方程转化为函数优化的问题,利用该算法求解,数值实验结果表明,算法有较高的收敛速度和求解精度。 An improved particle swarm optimization algorithm is proposed for particle swarm optimization algorithm shortcomings which are poor local searching ability, slow con- vergence speed in the latter, and so on. This algorithm is added quasi-Newton method in the late of particle swarm optimization algorithm. It has displayed sufficiently the characteristics of particle swarm optimization algorithm' s group search and quasi-Newton method' s local strong search. At the same time, it overcomes the disadvantages of particle swarm optimiza- tion algorithm. Transcendental equations axe converted to function optimization problems which are solved using this algorithm. Numerical results show that the algorithm has a high convergence speed and solution precision.
作者 张安玲
机构地区 长治学院数学系
出处 《数学的实践与认识》 CSCD 北大核心 2014年第22期172-176,共5页 Mathematics in Practice and Theory
基金 山西省高等学校科技创新项目(2013158)
关键词 粒子群算法 拟牛顿法 超越方程 优化 particle swarm optimization algorithm Quasi-Newton method transcendental equation optimizatio
  • 相关文献

参考文献6

  • 1Bianchinim, Fanellis. Optimal algorithms for well-conditioned nonlinear systems of equations[J]. IEEE Trans on Computes, 2001, 50(7): 689-698.
  • 2陈子仪,康立山,胡欣.遗传算法在方程求根中的应用[J].武汉大学学报(自然科学版),1998,44(5):577-580. 被引量:15
  • 3Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]//Proc of the 6th Int' 1 Symposium on Micro Machine and Human Science, Piscataway N J: IEEE Service Center, 1995: 39-43.
  • 4田明俊,周晶.岩土工程参数反演的一种新方法[J].岩石力学与工程学报,2005,24(9):1492-1496. 被引量:40
  • 5Shi Y, Ebethart R C. A modified particle swarm optimizer [C]//Proceedings of the 1998 Conference of Evolutionary Computation. Piscataway, N J: EEE Press, 1998, 69-73.
  • 6郭改文,黄卡玛.森林竞争算法及在超越方程求解中的应用[J].四川大学学报(工程科学版),2008,40(6):127-132. 被引量:5

二级参考文献19

  • 1王登刚,刘迎曦,李守巨.岩土工程位移反分析的遗传算法[J].岩石力学与工程学报,2000,19(z1):979-982. 被引量:49
  • 2[1]Holland J H.Adaptation in nature and artificial system[M].Ann Arbor:The University of Michigan Press,1975.
  • 3[2]Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks.Piscataway,NJ:IEEE Press,1995:1942-1948.
  • 4[3]Guo G W,Huang K M.Competition algorithm of simulating natural tree growth and its application in curve fitting[J].Journal of Computational and Theoretical Nanoscience,2007,4(7-8):1301-1304.
  • 5[5]张金屯.数量生态学[M].北京:科学出版社,2006.
  • 6[6]Bianchini M,Fanelli S.Optimal algorithms for well-conditioned nonlinear systems of equations[J].IEEE Trans.On computers,2001,50(7):689-698.
  • 7[9]Liu F,Chen X,Huang Z.Parallel genetic algorithm for finding roots of complex functional equation[C]//Proceedings of 2nd International Conference on Pervasive Computing and Application.Birmingham,Alabama:IEEE Press,2007:542-545.
  • 8潘正君,博士学位论文,1996年
  • 9刘勇,非数值并行算法.2,1995年
  • 10团体著者,计算方法.上,1985年

共引文献54

同被引文献82

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部