期刊文献+

聚吡咯在质子交换膜燃料电池中的应用 被引量:3

Applications of polypyrrole in proton exchange membrane fuel cells
下载PDF
导出
摘要 聚吡咯(polypyrrole,PPy)具有长链状共轭结构及多孔的载体形貌,且显示出高电导率、良好稳定性和无毒等优点,但PPy结构疏松且热稳定性和导电性不如碳材料。本文简述了PPy修饰载体后能为催化反应提供高效的电子和质子传导网络,并能通过改善载体表面形态更好地分散Pt,提高Pt的利用率。此外,本文还概述了聚吡咯类过渡金属复合催化剂在质子交换膜燃料电池(PEMFC)中表现出良好的氧还原反应(ORR)性能,且可通过优化合成条件、改变各成分的质量比、热处理或掺杂等方法提高此类非铂催化剂的性能。最后提出可利用M-PPy-C和Pt的协同效应,制备高活性和耐久性良好的Pt/M-PPy-C催化剂。 With a long chain conjugated structure and morphology of porous carrier,polypyrrole(PPy) shows advantages of high conductivity,long stability and non-toxicity. But PPy has loose structure and its thermal stability and electrical conductivity are not as good as carbon. PPy as a component of Pt catalyst support for PEMFC is favorable for setting up an effective conducting network for electron and proton transportation and may improve the surface morphology for platinum deposition,and then Pt utilization can be significantly improved. PPy-based transition metal catalyst shows excellent oxygen reduction reaction properties for PEMFC. Optimizing synthesis conditions,changing the mass ratio of components,heat treatment,and doping may improve the performance of PEMFC catalyst. The synergistic effect of M-PPy-C and Pt can be utilized to synthesize Pt/M-PPy-C catalyst with high activity and good durability.
出处 《化工进展》 EI CAS CSCD 北大核心 2014年第12期3230-3237,3245,共9页 Chemical Industry and Engineering Progress
基金 国家自然科学基金(21276199) 中央高校基本科研业务费专项资金 同济大学攀登高层次人才资助项目
关键词 燃料电池 载体 聚吡咯 导电性 氧还原反应 fuel cells support polypyrrole electrical conductivity oxygeon reductive reaction(ORR)
  • 相关文献

参考文献3

二级参考文献37

  • 1袁青云,唐亚文,周益明,刘长鹏,邢巍,陆天虹.甲酸作直接甲醇燃料电池替代燃料[J].应用化学,2005,22(9):929-932. 被引量:25
  • 2张玲玲,唐亚文,陆天虹,周益明,高颖,李邨.有机溶胶法制备直接甲酸燃料电池用Pd/C阳极催化剂[J].应用化学,2007,24(5):525-529. 被引量:5
  • 3Qiao, J. L.; Xu, L.; Ding, L.; Shi, P. H.; Zhang, L.; Baker, R.;Zhang, J. J. Int. J. Electrochem. Sci. 2013,8、1189.
  • 4Kromera, M. A.; Joseck, F.; Rhodes, T.; Guernsey, M.;Marcinkoski, J. Int. J. Hydrog. Energy 2009,34, 8276. doi:10.1016/j.ijhydene.2009.06.052.
  • 5Bashyam, R.; Zelenary, P. Nature 2006,443,63. doi: 10.1038/nature05118.
  • 6Lee, K.; Zhang, L.; Lui, H.; Hui, R.; Shi, Z.; Zhang, J.Electrochim. Acta 2009,54, 4704. doi: 10.1016/j.electacta.2009.03.081.
  • 7Baker, R.; Wilkinson, D. P.; Wilkinson, J. Electrochim. Acta2008,53, 6906. doi: 10.1016/j.electacta.2008.01.055.
  • 8Xu, Z+; Li, H.; Cao, G.; Zhang, Q.; Li, K.; Zhao, Z. J. Mol.Catal. A: Chem. 2011,335, 89. doi: 10.1016/j.molcata.2010.11.018.
  • 9Ding, L.; Qiao, J. L.; Feng, X.; Zhang, J.; Tian, B. Int. J.Hydrog. Energy 2012, 57, 14103. doi: 10.1016/j.ijhydene.2012.07.046.
  • 10Li, X.; Liu, G.; Popov, B. N. J. Power Sources 2010,195,6373. doi: 10.1016/j .jpowsour.2010.04.019.

共引文献52

同被引文献29

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部