期刊文献+

具有最优模型传递矩阵的交互式多模型算法 被引量:6

Interacting multiple model algorithm with optimal mode transition matrix
下载PDF
导出
摘要 在传统的交互式多模型(IMM,interacting multiple model)算法中,描述模型马尔科夫切换过程的模型传递矩阵被定义成一个常值矩阵,并且将子滤波器间的相关性信息遗漏.然而,由于实际环境的复杂性,传统的IMM算法无法满足飞行器跟踪的需求.为此,提出一种具有最优模型传递矩阵的交互式多模型(OMTM-IMM,optimal mode transition matrix IMM)算法,该算法在考虑子滤波器相关性的前提下,以线性最小方差理论为基础,推导出最优的模型传递矩阵,该传递矩阵更加符合实际情况,理论分析和仿真实验表明该算法有效地提高了飞行器跟踪精度. The traditional interacting multiple model ( IMM) algorithm usually models the mode evolutions as Markov processes with constant mode transition matrix and leaves the correlative information among sub-filters out. However, because of the complexity of the practical application, the traditional IMM algorithm is unsuitable in aircraft tracking. To solve these problems, an optimal mode transition matrix IMM algorithm ( OMTM-IMM) is presented. The new algorithm uses the linear minimum variance theory to calculate the optimal mode transition matrix according to the correlations between sub-filters. In this case, the new matrix further approaches the truth one, and the estimation accuracy can be improved. This conclusion can be support by the following theoretical derivation and simulations in aircraft tracking.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2014年第11期101-106,共6页 Journal of Harbin Institute of Technology
基金 国家自然科学基金(61374208)
关键词 交互式多模型算法 常值模型传递矩阵 最优模型传递矩阵 线性最小方差理论 相关性 IMM constant mode transition matrix adaptable mode transition matrix linear minimum variance theory correlation
  • 相关文献

参考文献18

  • 1BLOM H A P. An efficient filter for abruptly changing systems [ C ]//Proceedings of the 23rd IEEE Conference on Decision and Control. Las Vegas: NV, 1984: 656-658.
  • 2MAZOR E, AVERBUCH A, BAR-SHALOM Y, et al. Interacting multiple model methods in target tracking: a survey [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34 (1): 103-123.
  • 3QU H Q, PANG L P, LI S H. A novel interacting multiple model algorithm [ J ]. Signal Process, 2009, 89(11) : 2171-2177.
  • 4GAO L, XING J P, MA Z L, et al. Improved IMM algorithm for nonlinear maneuvering target tracking [ J ]. Procedia Engineering, 2012, 29( 1 ) : 4117-4123.
  • 5BLAIR W D, WATSON G A. Interacting multiple bias model algorithm with application to tracking maneuvering targets [ C ]//Proceedings of the 31st Conference on Decision and Control. Tucson: AZ, 1992 : 3790-3795.
  • 6LI X R, BAR-SHALOM Y. Mode-set adaptation in multiple-model estimators for hybrid systems [ C ]// Proceedings of the 1992 American Control Conference. Chicago: IL, 1992: 1794-1799.
  • 7BAR-SHALOM Y, LI X R, KIRUBARAJAN T. Estimation with Applications to Tracking and Navigation [ M]//New York: John Wiley & Sons, 2001.
  • 8LI X R, BAR-SHALOM Y. Multiple-model estimation with variable structure [ J ]. IEEE Transactions on Automatic Control, 1996, 41 (4) : 478-493.
  • 9FU X, JIA Y, DU J, et al. New interacting multiple model algorithms for the tracking of the maneuvering target [ J]. IET Control Theory and Applications, 2010, 4(10) : 2184-2194.
  • 10JOHNSTON L A, KRISHNAMURTHY V. An improvement to the interacting multiple model (IMM) algorithm [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 49(12) : 2909-2923.

同被引文献49

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部