期刊文献+

拟南芥细胞分裂素糖基转移酶UGT76C2的N端亮氨酸替换对酶活性的影响 被引量:2

Effect of the N-Terminal Leucine Substitution on the Enzyme Activity of Cytokinin Glucosyltransferase UGT76C2 of Arabidopsis thaliana
原文传递
导出
摘要 UGT76C2是负责细胞分裂素N-糖基化修饰的糖基转移酶,该基因对于维持植物体内细胞分裂素动态平衡有重要作用。为了进一步研究UGT76C2酶蛋白结构与催化活性的关系,本文采用定点突变方法,将UGT76C2的N端第31位的保守亮氨酸替换为组氨酸。结果发现,突变型UGT76C2在离体实验中完全丧失了对细胞分裂素的糖基化修饰活性,该突变基因的过表达转基因植物出现与UGT76C2突变体类似的表型,转基因植物体内的两类主要细胞分裂素的N-糖苷含量显著降低。实验结果证明了UGT76C2 N端亮氨酸残基对于糖基化修饰活性的重要性。 UGT76C2 is a glucosyltransferases responsible for the N-glucosylation of cytokinins, which is important for in vivo cytokinin homeostasis. In order to study the effects of protein structure on catalytic activity, the conserved N-terminal amino acid, leucine(L31), of UGT76C2 was replaced by histidine via site-specifi c mutation method. It was found that the mutated UGT76C2 completely lost in vitro glucosylating activity for cytokinins. The transgenic Arabidopsis plants overexpressing mutated UGT76C2 displayed a typical phonotype for ugt76c2 mutants. Moreover, the contents of N-glucosides of main cytokinins in Arabidopsis were substantially decreased. Our results demonstrated that the conserved N-terminal leucine of UGT76C2 was essential for cytokinin glucosylating activity.
出处 《植物生理学报》 CAS CSCD 北大核心 2014年第11期1659-1668,共10页 Plant Physiology Journal
基金 国家自然科学基金项目(30770214) 教育部博士学科点专项基金项目(20120131110023) 植物细胞工程与种质创新教育部重点实验室开放课题(2012-01)
关键词 糖基转移酶 定点突变 酶活性 细胞分裂素 拟南芥 glucosyltransferase site-specifi c mutation enzyme activity cytokinin Arabidopsis thaliana
  • 相关文献

参考文献2

二级参考文献25

  • 1Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 309 (5737): 1052-1056.
  • 2An XM, Wang DM, Wang ZL, Li B, Bo WH, Cao GL, Zhang ZY (2011). Isolation of a LEAFY homolog from Populus tomentosa: expression of PtLFY in P. tomentosa floral buds and PtLFY-IRmediated gene silencing in tobacco (Nicotiana tabacum). Plant Cell Rep, 30 (1): 89-100.
  • 3Baurle I, Dean C (2006). The timing of developmental transitions in plants. Cell, 125 (4): 655-664.
  • 4Bohlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson 0 (2006). COIFT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science, 312 (5776): 1040-1043.
  • 5Butaye KM, Cammue BP, Delaure SL, De Bolle MF (2005). Approaches to minimize variation of transgene expression in plants. Mol Breeding, 16 (1): 79-91.
  • 6Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C et al (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 316 (5827): \030-\ 033.
  • 7Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N et at (2012). Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res, 40: D 1178-1186.
  • 8Goto K, Meyerowitz EM (1994). Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev, 8 (13): 1548-1560.
  • 9Hsu CY, Adams JP, Kim H, No K, Ma C, Strauss SH, Drnevich J, Vandervelde L, Ellis JD, Rice BM et al (2011). FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Nat! Acad Sci USA, 108 (26): 10756-10761.
  • 10Hsu CY, Adams JP, No K, Liang H, Meilan R, Pechanova 0, Barakat A, Carlson JE, Page GP, Yuceer C (2012). Overexpression of CONSTANS homologs COl and C02 fails to alter normal reproductive onset and fall bud set in woody perennial poplar. PLoS One, 7 (9): e45448.

共引文献8

同被引文献34

  • 1潘维锋,李师鹏.酵母表达系统在植物功能基因组学研究中应用的局限性[J].植物生理学通讯,2006,42(6):1168-1172. 被引量:6
  • 2Chong J, Baltz R, Schmitt C, Beffa R, Fritig B, Saindrenan P. 2002. Down-regulation of a pathogen-responsive tobacco UDP-glucose: phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. Plant Cell, 14(5): 1093-1107.
  • 3Clough S J, Bent A F. 1998. Floral dip.. a simplified method for Agrobacterium-mediated transformation of.4rabidopsis thaliana. The Plant Journal, 16 (6): 735 - 743.
  • 4Dixon S C, Martin R C, Mok M C, Shaw G, Mok D W. 1989. Zeatin glycosylation enzymes in phaseolus: isolation of O-glucosyltransferase from Phaseolus lunatus and comparison to O-xylosyltransferase from Phaseolus vulgaris. Plant Physiol, 90 (4): 1316 - 1321.
  • 5Fraissinet-Tachet L, Baltz R, Chong J, Kauffmann S, Fritig B, Saindrenan P. 1998. Two tobacco genes induced by infection, elicitor and salicylic acid encode glucosyltransferases acting on phenylpropanoids and benzoic acid derivatives, including salicylic acid. FEBS Letters, 437 (3):319 -323.
  • 6Hou B K, Lim E K, Higgins G S, Bowles D J. 2004. N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. Journal of Biological Chemistry, 279 (46): 47822 - 47832.
  • 7Jameson P E. 1994. Cytokinin metabolism and compartmentation. Cytokinins: chemistry, activity and function. Boca Raton, FL: CRC Press: 113 - 128.
  • 8Martin R C, Mok M C, Habben J E, Mok D W S. 2001. A maize cytokinin gene encoding an O-glucosyltransferase specific to cis-zeatin. Proceedings of the National Academy of Sciences, 98 (10).. 5922 - 5926.
  • 9Martin R C, Mok M C, Mok D W. 1999. A gene encoding the cytokinin enzyme zeatin O-xylosyltransferase of Phaseolus vulgaris. Plant Physiol, 120 (2): 553 - 558.
  • 10Matros A, Mock H P. 2004. Ecotopic expression ofa UDP-glueose: phenylpropanold glucosyltransferase leads to increased resistance oftransgenic tobacco plants against infection with potato virus Y. Plant and Cell Physiology, 45 (9): 1185 - 1193.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部