期刊文献+

奇异值分解波束形成声源识别方法 被引量:17

Singular value decomposition beamforming method for sound source identification
下载PDF
导出
摘要 为了克服传统波束形成声源识别方法受旁瓣限制而无法识别次声源的缺点,将奇异值分析与波束形成算法相结合,给出了奇异值分解波束形成声源识别新方法:首先对阵列传声器测量信号的互谱矩阵进行奇异值分解重构,然后基于分解后的各互谱矩阵进行波束形成运算,从而识别主声源及各次声源。在仿真及算例试验均验证了其准确性及有效性的基础上,利用奇异值分解波束形成对某汽车前围板隔声薄弱环节进行识别,结果表明:空调进风口为第一声源,暖风机进出水管安装孔及空调漏水管安装孔分别为第二和第三声源。该方法准确高效,能够获得更全面的声源信息,提高了波束形成的声源识别性能,为识别次声源提供了有力工具。 In order to overcome the disadvantage that the minor source cannot be identified because of the side lobe limitation by traditional beamforming method, a new sound source identification method named singular value de-composition beamforming was presented, which combined the singular value decomposition and beam-forming algo-rithm.Signal cross-spectral matrix measured by microphones was decomposed and recombined, and then the main source and other minor sources can be identified when the decomposed cross-spectral matrix was calculated with beam-forming.The simulation and verifiable experiment validated the correctness and effectiveness of the new method.The weak parts of a vehicle’ s dash panel were identified by singular value decomposition beam-forming. The results show that the first source is the air condition inlet, the installation holes of air blower outlet-inlet pipe and the leak pipe of air condition are the second and third source, respectively.The method can improve the per-formance of sound source identification and provides a powerful tool for the identification of minor sources for its ac-curacy and efficiency in getting more comprehensive information of sound source.
出处 《电子测量与仪器学报》 CSCD 2014年第11期1177-1184,共8页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(50975296) 中央高校基本科研业务费(CDJZR13110001)资助项目
关键词 声源识别 波束形成 奇异值分解 次声源 试验 sound source identification beamforming singular value decomposition minor source experiment
  • 相关文献

参考文献16

  • 1GINN K B, HADDAD K. Noise source identification techniques : simple to advanced applications [ C ]. Pro- ceedings of the Acoustics 2012 Nantes Conference, Nantes, France, 2012: 1781-1786.
  • 2宋雷鸣,孙守光,张新华.一种改善beamforming“延迟求和”算法精度的方法[J].电子测量与仪器学报,2007,21(5):40-44. 被引量:3
  • 3李磊,于海锋,闫永立,胡广辉,曹亚飞,雷雯,罗宁.基于LabVIEW的声学相控阵视频监控系统[J].电子测量技术,2013,36(4):11-14. 被引量:5
  • 4BATEL M, MARROQUIN M. Noise source location techniques-simple to advanced applications [ J ]. Sound and Vibration, 2003, 37 (3) : 24-38.
  • 5杨洋,褚志刚,倪计民,王卫东.除自谱的互谱矩阵波束形成的噪声源识别技术[J].噪声与振动控制,2011,31(4):145-148. 被引量:32
  • 6孙爽,乔渭阳,黄晓聃.数控传声器阵列反卷积法对飞机噪音的应用与实验研究[J].应用声学,2012,31(4):294-302. 被引量:4
  • 7BROOKS T F, HUMPHREYS W M. A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays [ Jl. Journal of Sound and Vibration, 2006, 294(4-5): 856-879.
  • 8BROOKS T F, HUMPHREYS W M. Three-dimensional application of damas methodology for aeroacoustic noise source definition [ C]. llth AIAA/ CEAS Aeroacous- tics Conference, AIAA-2005-2960, Monterey, CA, 2005.
  • 9EHRENFRIED K, KOOP L. Comparison of iterative deconvolution algorithms for the mapping of acoustic sources [ J ]. AIAA Journal, 2007, 45 ( 7 ) : 1584-1595.
  • 10DOUGHERTY R P. Extensions of DAMAS and benefits and limitations of deconvolution in beamforming [ C ]. 11 th AIAA/ CEAS Aeroacoustics Conference, Monter- ey, CA, 2005: AIAA-2005-2961.

二级参考文献72

共引文献77

同被引文献153

引证文献17

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部