期刊文献+

硅表面微结构对表面润湿方向性影响的分子动力学研究 被引量:2

Effects of surface microstructure on wetting direction of silicon substrates by molecular dynamics study
下载PDF
导出
摘要 采用分子动力学方法研究了硅表面微结构对表面润湿方向性的影响,采用3种不同的微结构探讨了水滴在表面上的扩散方向问题,以及微结构尺寸对表面润湿性的影响.研究结果表明,表面微结构宽度存在临界宽度值,当微结构宽度小于临界宽度时表面表现为疏水性,反之,亲水性增强;在疏水性表面上,水的铺展性表现为各向同性,水滴稳定后俯视图近似为圆形,在亲水性表面,水的铺展性表现为各向异性,表面微结构形状不同,水滴稳定后呈现不同的特殊形状. Molecular dynamics simulation is used to study the wetting effects of silicon surface mi-crostructure on the wetting direction of microstructure.The spreading direction of water droplets on surfaces of three different microstructures,together with the influence of the size of micro-structures on the surface,are discussed.The results show that there is a critical width value for different micro-structures.A hydrophobic surface is formed when the microstructure width is smaller than its critical size.Otherwise,a hydrophilic surface is formed.When a surface is hydrophobic,the spread of wa-ter droplet is isotropic,showing a sphere shape approximately in a top view after it is stable.When a surface is hydrophilic,the micro-droplet spreads anisotropically,leading to different special steady shapes due to the difference of microstructure shape.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第6期1161-1165,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(51345012)
关键词 分子动力学 表面润湿性 表面微结构 molecular dynamics surface wetting surface micro-structure
  • 相关文献

参考文献16

  • 1Thornham D G, Smith J M, Grafe T U, et al. Setting the trap: cleaning behaviour of Camponotus schmitzi ants increases long-term capture efficiency of their pitch- er plant host, Nepenthes bicalcarata [ J]. Functional E- cology, 2012, 26(1): 11-19.
  • 2Goicochea J V, Hu M, Michel B, et al. Surface func- tionalization mechanisms of enhancing heat transfer at solid-liquid interfaces [ J ]. Journal of Heat Transfer, 2011, 133(8) : 082401.
  • 3Wong C H, Li B, Yu S K, et al. Molecular dynamics simulation of lubricant redistribution and transfer at near- contact head-disk interface [ J ]. Tribology Letter, 2011, 43(1) : 89 -99.
  • 4彭滟,温雅,张冬生,陈宏彦,罗士达,陈麟,徐公杰,朱亦鸣.飞秒激光功率与脉冲数的比例关系对制备硅表面微结构的影响[J].中国激光,2011,38(12):78-82. 被引量:19
  • 5Chu D, Nemoto A, Ito H. Effects of geometric parame-ters for superhydrophobicity of polymer surfaces fabrica- ted by precision tooling machines [ J ]. Microsyst Tech- nol, 2014, 20(2) : 193 -200.
  • 6Extrand C W, Moon S I, Hail P, et ai. Superwetting of structured surfaces I J ]. Langmuir, 2007, 23 ( 17 ) : 8882 - 8890.
  • 7Alteraifi A M, Sasa B J. Spreading of liquid drops over solid substrates:‘like wets like' [ J]. Journal of Adhe- sion Science and Technology, 2006, 20( 12): 1333 - 1343.
  • 8Hautman J, Klein M L. Microscopic wetting phenome- na [J]. Physical Review Letters, 1991, 67(13) : 1763 - 1766.
  • 9Lundgren M, Allan N L, Cosgrove T. Molecular dy- namics study of wetting of a pillar surface [ J ]. Lang- muir, 2003, 19( 17): 7127-7129.
  • 10Li X Y, Li L, Wang Y, et al. Wetting and interfacial properties of water on the defective graphene [ J ]. The Journal of Physical Chemistry C, 2013, 117 ( 27 ) : 14106 - 14112.

二级参考文献18

  • 1T. Her, R. J. Finlay, C. Wu et al.. Microstructuring of silicon with femtosecond laser pulses[J]. Appl. Phys. Lett., 1998, 73(12): 1673~1675.
  • 2M. Stubenrauch, M. Fischer, C. Kremin et al.. Black silicon-new functionalities in microsystems[J]. J. Micromech. Microengng., 2006, 16(6): S82~S87.
  • 3A. Serpengüzel, A. Kurt, I. Inan et al.. Luminescence of black silicon[J]. J. Nanophoton., 2008, 2(2): 021770.
  • 4H. Yuan, V. E. Yost, M. R. Page et al.. Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules[J]. Appl. Phys. Lett., 2009, 95(12): 123501.
  • 5Z. Huang, J. E. Carey, M. Liu et al.. Microstructured silicon photodetector[J]. Appl. Phys. Lett., 2006, 89(3): 033506.
  • 6C. Wu, C. H. Crouch, L. Zhao et al.. Visible luminescence from silicon surfaces microstructured in air[J]. Appl. Phys. Lett., 2002, 81(11): 1999~2002.
  • 7C. H. Crouch, J. E. Ccarey, M. Shen et al.. Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation[J]. Appl. Phys. A, 2004, 79(7): 1635~1641.
  • 8Y. Peng, Y. Wen, D. S. Zhang et al.. Optimal proportional relation between laser power and pulse number for the fabrication of surface-microstructured silicon[J]. Appl. Opt., 2011, 50(24): 4765~4768.
  • 9C. H. Crouch, J. E. Carey, J. M. Warrender et al.. Comparson of structure and properites of femtosecond and nanosecond laser structured silicon[J]. Appl. Phys. Lett., 2004, 84(11): 1850~1852.
  • 10J. Zhu, Y. Shen, W. Li et al.. Effect of polarization on femtosecond laser pulses structuring silicon surface[J]. Appl. Surf. Sci., 2006, 252(8): 2752~2756.

共引文献18

同被引文献20

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部