期刊文献+

基于分块局部二值模式的图像检索研究 被引量:6

Image Retrieval Based on Block Local Binary Pattern
下载PDF
导出
摘要 提出一种分块局部二值模式的图像检索方法,首先利用3×3像素邻域的局部灰度均值代替其中心像素作为阈值计算LBP值,以改善传统LBP算子的缺陷;然后对图像采用分块处理,以便更好地提取图像的局部特征.实验表明,与传统的基于局部二值模式的图像检索方法相比,此方法具有更高的检索准确率. In this paper ,a method of image retrieval based on block local binary pattern is proposed .To improve the original LBP ,the average local gray level of a 3 × 3 local area is used to calculate the value of LBP instead of the gray value of its central pixel .Then ,the image is divided into several different sub-blocks .Thus the better local features of the image can be extracted .Compared with the method of original LBP ,the result of experiment shows that the method of image retrieval based on blocked local binary pattern can achieve higher precision .
出处 《微电子学与计算机》 CSCD 北大核心 2014年第5期21-23,27,共4页 Microelectronics & Computer
关键词 图像检索 纹理特征 局部二值模式 分块 image retrieval texture feature Local Binary Pattern block
  • 相关文献

参考文献6

  • 1Ojala T, Pietiainen M, Hardwood D. A comparative study of texture measures with classification based on feature distribution[J]. Pattern Recognition, 1996, 29 (1):51-59.
  • 2Ojala T, Pietikainen M, Maenpaa T. Multiresolution grayscale and rotation invariant texture classificationwith Local Binary Patterns[J]. IEEE Transactions on Pattern Analysis and machine Intelligence, 2002, 24 (7): 971 -987.
  • 3Guo Zhenhua, Z'hang l.ei, Zhang David. Rotation in- variant texture classification using I.BP variance (LB- PV) with globa matching [J]. Pattern Recognition, 2010, 43(3): 706-719.
  • 4毋小省,孙君顶.基于增强纹理谱描述符的图像检索[J].计算机系统应用,2010,19(7):221-223. 被引量:2
  • 5毋小省.改进的旋转不变区域纹理谱描述符[J].光电子.激光,2011,22(5):783-787. 被引量:10
  • 6Yang Zhao, Wei Jia. Completed robust local binary pattern for texture classification[J].Neuroeomputing, 2012(106) :68-76.

二级参考文献11

  • 1木拉提.哈米提,刘伟,童勤业.纹理谱直方图与潜在语义标引在图像检索中的应用[J].科技通报,2006,22(3):389-394. 被引量:10
  • 2章毓晋.图像工程(上册).图像处理和分析[M].北京:清华大学出版社,1999..
  • 3Ojala T,Pietikainen M,Hardwood DA.Comparativestudy of texture measures with classification based on feature distribution.Pattern Recognition,1996,29:51-59.
  • 4Nanni L,Lumini A.A reliable method for cell phenotype image classification.Artificial Intelligence in Medicine,2008,43(2):87-97.
  • 5Heikkila M,Pietika inen M.A texture-based method for modeling the background and detecting moving objects.IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(4):657-662.
  • 6Heikkila M,Pietika inen M,Schmid C.Description of interest regions with local binary patterns.Pattern Recognition,2009,42(3):425-436.
  • 7Wu XS,Sun JD.An effective texture spectrum descriptor.Fifth lntemational Conference on Information Assurance and Security (IAS09),2009.
  • 8Manjunath BS,Ohm JR,Vasudvan V,et al.Color and texture descriptors.IEEE Transactions on Circuits and Systems for Video Technique,2001,6:703-715.
  • 9蔡蕾,王珂,张立保.基于局部二值模式的医学图像检索[J].光电子.激光,2008,19(1):104-106. 被引量:7
  • 10王玮,黄非非,李见为,冯海亮.采用LBP金字塔的人脸描述与识别[J].计算机辅助设计与图形学学报,2009,21(1):94-100. 被引量:48

共引文献10

同被引文献51

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部