期刊文献+

工业纯钛TA2非概率失效评定曲线研究 被引量:1

Non-probabilistic Failure Assessment Curve for Commercially Pure Titanium TA2
原文传递
导出
摘要 基于中心复合实验设计方法,对材料性能、裂纹尺寸、操作压力等不确定参数对失效评定曲线的影响水平作了定性分析;同时利用参数敏感性分析方法,对上述不确定性参数对失效评定曲线的影响进行了定量分析。结果表明,定性和定量分析具有一致性。基于EPRI工程计算方法,利用概率理论建立了TA2材料的概率失效评定曲线(Probabilistic Failure Assessment Curve,PFAC);利用区间分析理论,建立了TA2材料的非概率失效评定曲线(Non-probabilistic Failure Assessment Curve,NPFAC),对比PFAC和NPFAC发现利用NPFAC进行缺陷失效评定是有效可行的。 Based on the central composite experimental design method, the impact levels of uncertain parameters to failure assessment curve were qualitatively analyzed, such as material properties, defect dimension and operating pressure. With the sensitivity method, the impact levels of uncertain parameters to failure assessment curve were quantitatively analyzed. It is demonstrated that the qualitative results and quantitative results are consistent. Based on EPRI method, probabilistic failure assessment curves (PFAC) of commercially pure titanium TA2 were established with the probabilistic method, and non-probabilistic failure assessment curves (NPFAC) were established based on interval analysis method. Compared NPFAC with PFAC, it could be found that NPFAC for structural defect assessment is feasible and effective.
机构地区 南京工业大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2014年第11期2687-2691,共5页 Rare Metal Materials and Engineering
基金 国家自然科学基金(51075199) 江苏省普通高校研究生科研创新计划项目(CXZZ11_0341)
关键词 中心复合实验设计 区间敏感性 TA2 非概率失效评定曲线 central composite experimental design interval sensitivity TA2 non-probabilistic failure assessment curve
  • 相关文献

参考文献18

  • 1周廉.美国、日本和中国钛工业发展评述[J].稀有金属材料与工程,2003,32(8):577-584. 被引量:76
  • 2Gates R S. International Journal of Pressure Vessels and Piping [J], 1985, 18:1.
  • 3Dai Shuhe. International Journal of Pressure Vessels and Piping [J], 1993, 56(3): 263.
  • 4LiJiang(李江),LiFuguo(李付国),XueFengmei(薛凤梅)et al.稀有金属材料与工程[J],2011,40(S2);577.
  • 5郭书祥,吕震宙,冯元生.基于区间分析的结构非概率可靠性模型[J].计算力学学报,2001,18(1):56-60. 被引量:294
  • 6Ben-Haim Y. Structural Safety[J], 1994, 14:227.
  • 7Ben-Haim Y. Structural Safety[J], 1995, 17 (2): 91.
  • 8Pan Linfeng, Zhou Changyu. FM2010 Conference Program [C]. Shanghai: ECUST, 2010.
  • 9Dai Q, Zhou C Y, Peng J. PVP2011[C]. Baltimore, 2011.
  • 10BEGL Procedure, British Energy, Gloucester R6-Revision4.[S]. UK. 2001.

二级参考文献46

  • 1刘成立,吕震宙,徐有良.粉末冶金涡轮盘裂纹扩展可靠性分析方法[J].稀有金属材料与工程,2006,35(2):232-236. 被引量:8
  • 2宋迎东,温卫东,高德平,宋迎.粉末冶金涡轮盘的应用及寿命研究[J].航空动力学报,1996,11(3):294-298. 被引量:17
  • 3RenTiemei(任铁梅).稀有金属材料与工程,1983,12(4):100-100.
  • 4[1]Ellishakoff I. Essay on uncertainties in elastic and viscoelastic structures:from A M Freudenthal's criticisms to modern convex modeling [J]. Computers & Structures, 1995, 56(6): 871~895.
  • 5[2]Ben-Haim Y. Convex models of uncertainty in radial pulse buckling of shells[J]. Journal of Applied Mechanics. 1993, 60(3):683.
  • 6[3]Elishakoff I, Elisseeff P, et al. Non-probabilistic, convex-theoretic modeling of scatter in material properties [J]. AIAA JOURNAL, 1994, 32: 843~849.
  • 7[4]Ben-Haim Y. A non-probabilistic concept of reliability [J]. Structural Safety, 1994, 14(4):227~245.
  • 8[5]Elishakoff I. Discussion on. a non-probabilistic concept of reliability [J]. Structural Safety, 1995, 17(3): 195~199.
  • 9[6]Ben-Haim Y. A non-probabilistic measure of reliability of linear systems based on expansion of convex models [J]. Structural Safety, 1995, 17(2): 91~109.
  • 10[7]Alefeld G, Claudio D. The basic properties of interval arithmetic, its software realizations and some applications [J]. Computers & Structures. 1998, 67(1/3): 3~8.

共引文献390

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部