期刊文献+

基于边界邻域最大值滤波的快速图像去雾算法 被引量:17

A Fast Image Defogging Algorithm Based on Edge-maximum Filter
下载PDF
导出
摘要 为解决现有去雾算法结果中存在的光晕现象、颜色失真等问题,提出一种基于边界邻域最大值滤波的图像去雾方法.首先通过边缘检测寻找图像边界被低估的暗原色值并对其进行边界邻域最大值滤波,以得到更为准确的透射率图来消除光晕现象;其次对暗原色图乘以一个尺度因子,扩大透射率的取值范围,提高去雾结果的对比度;最后设置两个亮度阈值以及一个平坦阈值,消除图像中高亮度物体的影响,获得更为准确的大气光值,使得去雾结果颜色保真度较高.仿真结果表明,与现有去雾算法相比,本文算法对含高亮度物体以及含细节信息的带雾图像,均可消除光晕现象,获得高对比度及高颜色保真度的去雾结果,同时也提高了算法的处理速度. A fast image defogging algorithm based on edge-maximum filter was proposed to address halo effect and color distortion caused by the existing defogging methods.Firstly,an edge-maximum filter was used to recover the undervalued dark pixels obtained by edge detection,which was to receive an accurate transmission map and eliminate the halo effect.Then in order to gain a high contrast dehazing image,all the dark pixels were multiplied by a scaling factor to improve the dynamic ranges of the transmission.Finally,two brightness thresholds and one flat threshold were set to eliminate the influence of high light objects in the image and obtain a more accurate airlight,which keeps a high color fidelity in the dehazing image.The simulation results show that the proposed method,compared with other algorithms,could eliminate the halo effect and achieve the dehazing image with high contrast and high color fidelity,especially for the images containing high light objects or rich details.Meanwhile,the computational speed is also improved.
出处 《光子学报》 EI CAS CSCD 北大核心 2014年第11期108-113,共6页 Acta Photonica Sinica
基金 国家自然科学基金(61373180) 2014年西南交通大学博士研究生创新基金 中央高校基本科研业务费专项基金
关键词 图像处理 图像增强 雾霭 边缘检测 光晕现象 颜色保真度 Image processing Image enhancement Fog Edge detection Halo effects Color fidelity
  • 相关文献

参考文献16

  • 1TAN R. Visibility in bad weather from a single image[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Alaska, USA, 2008: 1-8.
  • 2HE Kai-ming, SUN Jian, TANG Xiao-ou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (12) : 2341- 2353.
  • 3汪荣贵,傅剑峰,杨志学,沈法琳,查炜.基于暗原色先验模型的Retinex算法[J].电子学报,2013,41(6):1188-1192. 被引量:31
  • 4方帅,王勇,曹洋,占吉清,饶瑞中.单幅雾天图像复原[J].电子学报,2010,38(10):2279-2284. 被引量:35
  • 5刘楠,程咏梅,赵永强.基于加权暗通道的图像去雾方法[J].光子学报,2012,41(3):320-325. 被引量:23
  • 6庞春颖,嵇晓强,孙丽娜,郎小龙.一种改进的图像快速去雾新方法[J].光子学报,2013,42(7):872-877. 被引量:26
  • 7甘佳佳,肖春霞.结合精确大气散射图计算的图像快速去雾[J].中国图象图形学报,2013,18(5):583-590. 被引量:30
  • 8SUN Wei. A new single-image fog removal algorithm based on physical model [J]. International Journal for Light and Electron Optics. 2013, 124(21): 4770- 4775.
  • 9GIBSON K B, VO D T , NGUYEN T Q. An investigation ofdehazing effects on image and video coding[J].IEEE Transactions on Image Processing, 2012, 21(2) : 662-673.
  • 10HE Kai-ming, SUN Jian, TANG Xiao-ou. Guided image filtering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35: 1-13.

二级参考文献125

  • 1芮义斌,李鹏,孙锦涛.一种图像去薄雾方法[J].计算机应用,2006,26(1):154-156. 被引量:52
  • 2陈桂友,孙同景,雷印胜.一种基于自适应滤波的指纹图像增强算法[J].电子测量与仪器学报,2006,20(6):76-80. 被引量:12
  • 3王健,陈启美,章德.CMOS图像实时增强预处理研究及实现[J].仪器仪表学报,2007,28(1):48-52. 被引量:4
  • 4Shree K Nayar, Srinivasa G Narasimhan. Vision in Bad Weather [J]. Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999,2 : 820-827.
  • 5Srinivasa G arasimhan, Shree K Nayar. Chromatic Framework for Vision in Bad Weather[J].IEEE Conference on Computer Vision and Pattern Recognition, 2000, 1:598- 605.
  • 6Oakley J P, Satherley B L. Improving image quality in poor visibility conditions using a physical model for contrast degradation [J]. Proceedings of IEEE Transactions on Image Processing, 1998, 7(2) : 167-179.
  • 7Liu Hongjun, Zhou Yan, Wang Xin-wei. Study of defog technology based on scattering model with laser imaging night vision assistant driving system [J]. Proceedings of the SHE, 2009, 73830R:6.
  • 8ZHANG GuangJurL MACHINE VISION[M]. Beijing: Science Press, 2005.
  • 9Tuytelaars T, Van Gool L, Proesmans M, et al. The cascaded Hough transform as an aid in aerial image interpretation[C]// Sixth International Conference on Computer Vision. USA: IEEE, 1998.
  • 10Srinivasa G Narasimhan. Vision and the Atmosphere[J]. International Journal of Computer Vision, 2002, 48(2):233-254.

共引文献407

同被引文献137

引证文献17

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部