期刊文献+

Application of a support vector machine for prediction of slope stability 被引量:14

Application of a support vector machine for prediction of slope stability
原文传递
导出
摘要 Slope stability estimation is an engineering problem that involves several parameters. To address these problems, a hybrid model based on the combination of support vector machine(SVM) and particle swarm optimization(PSO) is proposed in this study to improve the forecasting performance. PSO was employed in selecting the appropriate SVM parameters to enhance the forecasting accuracy. Several important parameters, including the magnitude of unit weight, cohesion, angle of internal friction, slope angle, height, pore water pressure coefficient, were used as the input parameters, while the status of slope was the output parameter. The results show that the PSO-SVM is a powerful computational tool that can be used to predict the slope stability.
出处 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第12期2379-2386,共8页 中国科学(技术科学英文版)
关键词 slope stability support vector machine particle swarm optimization PREDICTION 边坡稳定性评价 稳定性预测 支持向量机 应用 粒子群优化 预报准确率 工程问题 混合模式
  • 相关文献

参考文献11

二级参考文献98

共引文献61

同被引文献140

引证文献14

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部