期刊文献+

双连续正则预解算子族的生成及逼近定理

The Generation and Approximation Theorems for Bi-Continuous Regularized Resolvent Operator Families
下载PDF
导出
摘要 传统的半群理论研究很多时候要求半群是Banach空间上的强连续半群,在实际研究中发现有些问题所对应的半群并不是强连续的,可以在Banach空间上赋予一个比范数拓扑粗的局部凸拓扑τ,使得半群在拓扑τ下强连续.基于此在给出了Banach空间上双连续正则预解算子族概念及其性质的基础上,重点讨论双连续正则预解算子族的生成及逼近定理. For many applications of operator semigroups,strong continuity with respect to the norm of a Banach space is a too strong requirement.In fact,there exists a class operator semigroups which the usual strong continuity fails to hold and then the concept of bi-continuous semigroups is introduced.Based on the theories of bi-continuous semigroups and regularized resolvent operator families,the concept of bi-continuous regularized resolvent operator families is presented,then the generation and approximation theorems for bi-continuous regularized resolvent operator families are studied especially.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期844-849,共6页 Journal of Sichuan Normal University(Natural Science)
基金 中央高校基本科研资助基金(3142014039 3142013039和3142014127)资助项目
关键词 双连续正则预解算子族 生成定理 逼近定理 bi-continuous regularized resolvent operator generation theorems approximation theorems
  • 相关文献

参考文献15

  • 1Kuhnemund F.A Hille-Yosida theorem for bi-continuous semigroups[J].Semigroup Forum,2003,67 (2):205-225.
  • 2Albanese A A,Mangino E.Trotter-Kato Theorems for bi-continuous semigroups and applications to Feller semigroups[J].J Math Anal Appl,2004,289:477-492.
  • 3Jara P.Rational approximation schemes for bi-continuous semigroups[J].J Math Anal Appl,2008,344:956-968.
  • 4Da Prato G,Ianelli M.Linear i ntegro differential equations in Banach spaces[J].Rend Mat Univ Padova,1980,62:207-219.
  • 5Lizama C.Uniform continuity and compactness for resolvent families of operators[J].Acta Appl Math,1995,38:131-138.
  • 6Shaw S Y.Ergodic theorems and approximation theorems with rates[J].Taiwan Residents J Math,1995,4 (3):365-383.
  • 7郑权 孙应传.预解算子族的一个推广.数学物理学报,2000,20:723-726.
  • 8Lizama C.Regularized solutions for abstract volterra equations[J].J Math Anal Appl,2000,243:278-292.
  • 9Lizama C.On Approximation and representation of K-regularized resolvent families[J].Intergral Equations and Operator Theory,2001,41:223-229.
  • 10Lizama C,Prado H.Rates of approximation and ergodic limits of regularized operator families[J].J Approx Theory,2003,122:42-61.

二级参考文献21

  • 1郑权 孙应传.预解算子族的一个推广.数学物理学报,2000,20:723-726.
  • 2GOLDSTEIN J A. Semigroups of Linear Operators and Applications [M]. Oxford, New York, 1985.
  • 3PRATO G D, IANNELLI M. Linear Integro-Differential Equation in Banach Space [M]. Rend. Sem. Math.Padova, 1980, 62: 207-219.
  • 4SHAW S Y. Ergodic theorems vith rate for r-time integrated solution families operator theory [J]. Advances and Applications, 2000, 118: 359-371.
  • 5ARENDT W, PRUSS J. Vector-valued Tauberian theorems and asymptotic behavier of linear Volterra equations [J]. SIAM J. Math. Anal., 1992, 23:412-446.
  • 6CHANG J C, SHAW S Y. Rate of approximation and ergodicl limits of resolvent families [J]. Arch. Math.,1996, 66: 320-330.
  • 7LIZAMA C. A meam ergodic theorem for resolvent operators [J]. Semigroup Forum, 1993, 47: 277-230.
  • 8SHAW S Y. Mean ergodic theorems and linear functional equations [J]. J. Funct. Anal., 1989, 87: 428-441.
  • 9SHAW S Y. Mean ergodic theorems and approximation theorems with rates [J]. Taiwan J. Math., 2000, 4:365-383.
  • 10LI M, HUANG F L, CHU X L. Ergodic theory for C-semigroup [J]. J. Sichuan University, 1999, 36: 1-8.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部