摘要
传统的半群理论研究很多时候要求半群是Banach空间上的强连续半群,在实际研究中发现有些问题所对应的半群并不是强连续的,可以在Banach空间上赋予一个比范数拓扑粗的局部凸拓扑τ,使得半群在拓扑τ下强连续.基于此在给出了Banach空间上双连续正则预解算子族概念及其性质的基础上,重点讨论双连续正则预解算子族的生成及逼近定理.
For many applications of operator semigroups,strong continuity with respect to the norm of a Banach space is a too strong requirement.In fact,there exists a class operator semigroups which the usual strong continuity fails to hold and then the concept of bi-continuous semigroups is introduced.Based on the theories of bi-continuous semigroups and regularized resolvent operator families,the concept of bi-continuous regularized resolvent operator families is presented,then the generation and approximation theorems for bi-continuous regularized resolvent operator families are studied especially.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第6期844-849,共6页
Journal of Sichuan Normal University(Natural Science)
基金
中央高校基本科研资助基金(3142014039
3142013039和3142014127)资助项目
关键词
双连续正则预解算子族
生成定理
逼近定理
bi-continuous regularized resolvent operator
generation theorems
approximation theorems